scholarly journals Secretion of the Adipocyte-Specific Secretory Protein Adiponectin Critically Depends on Thiol-Mediated Protein Retention

2007 ◽  
Vol 27 (10) ◽  
pp. 3716-3731 ◽  
Author(s):  
Zhao V. Wang ◽  
Todd D. Schraw ◽  
Ja-Young Kim ◽  
Tayeba Khan ◽  
Michael W. Rajala ◽  
...  

ABSTRACT Adiponectin is a secretory protein abundantly secreted from adipocytes. It assembles into a number of different higher-order complexes. Adipocytes maintain tight control over circulating plasma levels, suggesting the existence of a complex, highly regulated biosynthetic pathway. However, the critical mediators of adiponectin maturation within the secretory pathway have not been elucidated. Previously, we found that a significant portion of de novo-synthesized adiponectin is not secreted and retained in adipocytes. Here, we show that there is an abundant pool of properly folded adiponectin in the secretory pathway that is retained through thiol-mediated retention, as judged by the release of adiponectin in response to treatment of adipocytes with reducing agents. Adiponectin is covalently bound to the ER chaperone ERp44. An adiponectin mutant lacking cysteine 39 fails to stably interact with ERp44, demonstrating that this residue is the primary site mediating the covalent interaction. Another ER chaperone, Ero1-Lα, plays a critical role in the release of adiponectin from ERp44. Levels of both of these proteins are highly regulated in adipocytes and are influenced by the metabolic state of the cell. While less critical for the secretion of trimers, these chaperones play a major role in the assembly of higher-order adiponectin complexes. Our data highlight the importance of posttranslational events controlling adiponectin levels and the release of adiponectin from adipocytes. One mechanism for increasing circulating levels of specific adiponectin complexes by peroxisome proliferator-activated receptor gamma agonists may be selective upregulation of rate-limiting chaperones.

2005 ◽  
Vol 17 (4) ◽  
pp. 423 ◽  
Author(s):  
E. Capobianco ◽  
A. Jawerbaum ◽  
M. C. Romanini ◽  
V. White ◽  
C. Pustovrh ◽  
...  

15-Deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) is a peroxisome proliferator-activated receptor γ (PPARγ) ligand that regulates lipid homeostasis and has anti-inflammatory properties in many cell types. We postulated that 15dPGJ2 may regulate lipid homeostasis and nitric oxide (NO) levels in term placental tissues and that alterations in these pathways may be involved in diabetes-induced placental derangements. In the present study, we observed that, in term placental tissues from streptozotocin-induced diabetic rats, 15dPGJ2 concentrations were decreased (83%) and immunostaining for nitrotyrosine, indicating peroxynitrite-induced damage, was increased. In the presence of 15dPGJ2, concentrations of nitrates/nitrites (an index of NO production) were diminished (40%) in both control and diabetic rats, an effect that seems to be both dependent on and independent of PPARγ activation. Exogenous 15dPGJ2 did not modify lipid mass, but decreased the incorporation of 14C-acetate into triacylglycerol (35%), cholesteryl ester (55%) and phospholipid (32%) in placenta from control rats, an effect that appears to be dependent on PPARγ activation. In contrast, the addition of 15dPGJ2 did not alter de novo lipid synthesis in diabetic rat placenta, which showed decreased levels of PPARγ. We conclude that 15dPGJ2 modulates placental lipid metabolism and NO production. The concentration and function of 15dPGJ2 and concentrations of PPARγ were altered in placentas from diabetic rats, anomalies probably involved in diabetes-induced placental dysfunction.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Michinari Nakamura ◽  
Peiyong Zhai ◽  
Junichi Sadoshima

Obesity and insulin resistance (IR) lead to impaired cardiac metabolism, resulting in cardiac dysfunction. However, the underlying mechanisms responsible for the development of cardiac dysfunction remain poorly understood. PPARα serves as a key regulator of fatty acid (FA) metabolism in the heart. GSK-3α, a serine/threonine kinase, was dephosphorylated at S21 and activated (2.0 fold, p<0.05) in the hearts of obese mice fed a high-fat diet (HFD) and ob/ob mice. To evaluate the functional significance of GSK-3α upregulation, wild-type (WT) and cardiac specific GSK-3α heterozygous knockout (cGSK-3α HKO) mice were fed a HFD for up to 14 weeks. There was no difference in the food intake or body weight change between WT and cGSK-3α HKO mice. However, cardiac hypertrophy and diastolic dysfunction observed in WT mice were significantly ameliorated in cGSK-3α HKO mice after HFD feeding (8.1± 0.6 and 6.5±0.5, LVW/TL; 24.8±0.9 and 16.6±0.8, deceleration time (DT), all p<0.05). FA oxidation (FAO) (0.81 fold) and ectopic lipid accumulation (Oil Red O staining) were significantly decreased in cGSK-3α HKO mice than in WT mice after HFD feeding. GSK-3α, but not GSK-3β, directly interacted with and phosphorylated PPARα at the ligand binding domain in cardiomyocytes (CMs) and in the heart. PPARα phosphorylation in the heart was significantly increased (2.1 fold, p<0.05) in response to HFD, but it was attenuated in cGSK-3α HKO mice (0.74 fold, p<0.05). Fenofibrate, a PPARα ligand, inhibited GSK-3α-induced PPARα phosphorylation (0.81 fold, p<0.05), reduced ectopic lipid accumulation, FAO (0.84 fold, p<0.05), and attenuated diastolic dysfunction (25.5±3.1 and 18.6±2.5, DT; 0.16±0.04 and 0.08±0.02, EDPVR, all p<0.05) in the heart of HFD fed mice. Collectively, these results suggest that GSK-3α increases PPARα activity through phosphorylation of PPARα, which is inhibited by Fenofibrate. Activation of GSK-3α and consequent phosphorylation of PPARα during obesity and IR could play an important role in the development of cardiac hypertrophy and diastolic dysfunction. Synthetic PPARα ligands inhibit GSK-3α-mediated phosphorylation of PPARα, thereby paradoxically attenuating excessive FA metabolism in cardiomyocytes.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Pimonrat Ketsawatsomkron ◽  
Deborah R Davis ◽  
Aline M Hilzendeger ◽  
Justin L Grobe ◽  
Curt D Sigmund

PPARG, a ligand-activated transcription factor plays a critical role in the regulation of blood pressure and vascular function. We hypothesized that smooth muscle cell (SMC) PPARG protects against hypertension (HT) and resistance vessel dysfunction. Transgenic mice expressing dominant negative PPARG (S-P467L) in SMC or non-transgenic controls (NT) were implanted with DOCA pellet and allowed ad libitum access to 0.15 M NaCl for 21 days in addition to regular chow and water. Blood pressure was monitored by telemetry and mesenteric arterial (MA) function was assessed by pressurized myograph. At baseline, 24-hour mean arterial pressure (MAP) was similar between NT and S-P467L mice, while the transgenic mice were tachycardic. DOCA-salt increased MAP to a much greater degree in S-P467L mice (Δ MAP; S-P467L: +34.2±6.0, NT: +13.3±5.7, p<0.05 vs NT). Heart rate was similarly decreased in both groups after DOCA-salt. Vasoconstriction to KCl, phenylephrine and endothelin-1 did not differ in MA from DOCA-salt treated NT and S-P467L, while the response to vasopressin was significantly reduced in S-P467L after DOCA-salt (% constriction at 10-8 M, S-P467L: 31.6±5.6, NT: 46.7±3.8, p<0.05 vs NT). Urinary copeptin, a surrogate marker for arginine vasopressin was similar in both groups regardless of treatment. Vasorelaxation to acetylcholine was slightly impaired in S-P467L MA compared to NT at baseline whereas this effect was further exaggerated after DOCA-salt (% relaxation at 10-5 M, S-P467L: 56.1±8.3, NT: 79.4±5.6, p<0.05 vs NT). Vascular morphology at luminal pressure of 75 mmHg showed a significant increase in wall thickness (S-P467L: 18.7±0.8, NT: 16.0±0.4, p<0.05 vs NT) and % media/lumen (S-P467L: 8.4±0.3, NT: 7.1±0.2, p<0.05 vs NT) in S-P467L MA after DOCA-salt. Expression of tissue inhibitor of metalloproteinases (TIMP)-4 and regulator of G-protein signaling (RGS)-5 transcript were 2- and 3.5-fold increased, respectively, in MA of NT with DOCA-salt compared to NT baseline. However, this induction was markedly blunted in S-P467L MA. We conclude that interference with PPARG function in SMC leads to altered gene expression crucial for normal vascular homeostasis, thereby sensitizing the mice to the effects of DOCA-salt induced HT and vascular dysfunction.


2002 ◽  
Vol 22 (8) ◽  
pp. 2607-2619 ◽  
Author(s):  
Taro E. Akiyama ◽  
Shuichi Sakai ◽  
Gilles Lambert ◽  
Christopher J. Nicol ◽  
Kimihiko Matsusue ◽  
...  

ABSTRACT Disruption of the peroxisome proliferator-activated receptor γ (PPARγ) gene causes embryonic lethality due to placental dysfunction. To circumvent this, a PPARγ conditional gene knockout mouse was produced by using the Cre-loxP system. The targeted allele, containing loxP sites flanking exon 2 of the PPARγ gene, was crossed into a transgenic mouse line expressing Cre recombinase under the control of the alpha/beta interferon-inducible (MX) promoter. Induction of the MX promoter by pIpC resulted in nearly complete deletion of the targeted exon, a corresponding loss of full-length PPARγ mRNA transcript and protein, and marked reductions in basal and troglitazone-stimulated expression of the genes encoding lipoprotein lipase, CD36, LXRα, and ABCG1 in thioglycolate-elicited peritoneal macrophages. Reductions in the basal levels of apolipoprotein E (apoE) mRNA in macrophages and apoE protein in total plasma and high-density lipoprotein (HDL) were also observed in pIpC-treated PPARγ-MXCre+ mice. Basal cholesterol efflux from cholesterol-loaded macrophages to HDL was significantly reduced after disruption of the PPARγ gene. Troglitazone selectively inhibited ABCA1 expression (while rosiglitazone, ciglitazone, and pioglitazone had little effect) and cholesterol efflux in both PPARγ-deficient and control macrophages, indicating that this drug can exert paradoxical effects on cholesterol homeostasis that are independent of PPARγ. Together, these data indicate that PPARγ plays a critical role in the regulation of cholesterol homeostasis by controlling the expression of a network of genes that mediate cholesterol efflux from cells and its transport in plasma.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Patricia E. Almeida ◽  
Alan Brito Carneiro ◽  
Adriana R. Silva ◽  
Patricia T. Bozza

Tuberculosis continues to be a global health threat, with drug resistance and HIV coinfection presenting challenges for its control.Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a highly adapted pathogen that has evolved different strategies to subvert the immune and metabolic responses of host cells. Although the significance of peroxisome proliferator-activated receptor gamma (PPARγ) activation by mycobacteria is not fully understood, recent findings are beginning to uncover a critical role for PPARγduring mycobacterial infection. Here, we will review the molecular mechanisms that regulate PPARγexpression and function during mycobacterial infection. Current evidence indicates that mycobacterial infection causes a time-dependent increase in PPARγexpression through mechanisms that involve pattern recognition receptor activation. Mycobacterial triggered increased PPARγexpression and activation lead to increased lipid droplet formation and downmodulation of macrophage response, suggesting that PPARγexpression might aid the mycobacteria in circumventing the host response acting as an escape mechanism. Indeed, inhibition of PPARγenhances mycobacterial killing capacity of macrophages, suggesting a role of PPARγin favoring the establishment of chronic infection. Collectively, PPARγis emerging as a regulator of tuberculosis pathogenesis and an attractive target for the development of adjunctive tuberculosis therapies.


Endocrinology ◽  
2008 ◽  
Vol 149 (8) ◽  
pp. 4086-4094 ◽  
Author(s):  
Tomonaga Ichikawa ◽  
Jifeng Zhang ◽  
Kai Chen ◽  
Yusen Liu ◽  
Francisco J. Schopfer ◽  
...  

Nitration products of unsaturated fatty acids are formed via NO-dependent oxidative reactions and appear to be a new class of endogenous antiinflammatory mediators. Nitroalkene derivatives of nitrated linoleic acid (LNO2) and nitrated oleic acid (OA-NO2) alleviate inflammatory responses in macrophages, but the underlying mechanisms remain to be fully defined. Herein we report that LNO2 and OA-NO2 suppress proinflammatory signal transducer and activator of transcription (STAT) signaling in macrophages. In RAW264.7 cells, a murine macrophage cell line, LNO2 and OA-NO2 inhibited the lipopolysaccharide (LPS)-induced STAT1 phosphorylation and the STAT1-dependent transcriptional activity, thereby suppressing expression of its target gene such as iNOS and MCP-1. The nitroalkene-mediated inhibition of STAT1 activity was not affected by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (a NO scavenger), GW9662 (a peroxisome proliferator-activated receptor-γ-specific antagonist) or glutathione (an antioxidant), suggesting an underlying mechanism independent of NO, peroxisome proliferator-activated receptor-γ, or thio-nitralkylation. In contrast, LNO2 or OA-NO2 alone up-regulated both mRNA and protein levels of MAPK phosphatase 1 (MKP-1) and strongly augmented the LPS-induced MKP-1 protein expression. Knockdown of MKP-1 by MKP-1 small interfering RNA enhanced the LPS-induced STAT1 phosphorylation, suggesting that MKP-1 acts as a negative regulator for LPS-induced STAT signaling. In addition, the nitroalkene-mediated inhibitory effects on STAT1 phosphorylation, iNOS expression, and MCP-1 secretion were also largely attenuated by the MKP-1 small interfering RNA approach. Taken together, our data demonstrate that nitroalkenes inhibit proinflammatory STAT signaling through inducting MKP-1 in macrophages.


2009 ◽  
Vol 84 (6) ◽  
pp. 2946-2954 ◽  
Author(s):  
Benjamin Rauwel ◽  
Bernard Mariamé ◽  
Hélène Martin ◽  
Ronni Nielsen ◽  
Sophie Allart ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) contributes to pathogenic processes in immunosuppressed individuals, in fetuses, and in neonates. In the present report, by using reporter gene activation assays and confocal microscopy in the presence of a specific antagonist, we show for the first time that HCMV infection induces peroxisome proliferator-activated receptor gamma (PPARγ) transcriptional activity in infected cells. We demonstrate that the PPARγ antagonist dramatically impairs virus production and that the major immediate-early promoter contains PPAR response elements able to bind PPARγ, as assessed by electrophoretic mobility shift and chromatin immunoprecipitation assays. Due to the key role of PPARγ in placentation and its specific trophoblast expression within the human placenta, we then provided evidence that by activating PPARγ human cytomegalovirus dramatically impaired early human trophoblast migration and invasiveness, as assessed by using well-established in vitro models of invasive trophoblast, i.e., primary cultures of extravillous cytotrophoblasts (EVCT) isolated from first-trimester placentas and the EVCT-derived cell line HIPEC. Our data provide new clues to explain how early infection during pregnancy could impair implantation and placentation and therefore embryonic development.


2011 ◽  
Vol 39 (6) ◽  
pp. 1601-1605 ◽  
Author(s):  
David Bishop-Bailey

The PPAR (peroxisome-proliferator-activated receptor) family consists of three ligand-activated nuclear receptors: PPARα, PPARβ/δ and PPARγ. These PPARs have important roles in the regulation of glucose and fatty acid metabolism, cell differentiation and immune function, but were also found to be expressed in endothelial cells in the late 1990s. The early endothelial focus of PPARs was PPARγ, the molecular target for the insulin-sensitizing thiazolidinedione/glitazone class of drugs. Activation of PPARγ was shown to inhibit angiogenesis in vitro and in models of retinopathy and cancer, whereas more recent data point to a critical role in the development of the vasculature in the placenta. Similarly, PPARα, the molecular target for the fibrate class of drugs, also has anti-angiogenic properties in experimental models. In contrast, unlike PPARα or PPARγ, activation of PPARβ/δ induces angiogenesis, in vitro and in vivo, and has been suggested to be a critical component of the angiogenic switch in pancreatic cancer. Moreover, PPARβ/δ is an exercise mimetic and appears to contribute to the angiogenic remodelling of cardiac and skeletal muscle induced by exercise. This evidence and the emerging mechanisms by which PPARs act in endothelial cells are discussed in more detail.


Sign in / Sign up

Export Citation Format

Share Document