scholarly journals Evidence for a Superoxide Permeability Pathway in Endosomal Membranes

2008 ◽  
Vol 28 (11) ◽  
pp. 3700-3712 ◽  
Author(s):  
Davis R. Mumbengegwi ◽  
Qiang Li ◽  
Canhui Li ◽  
Christine E. Bear ◽  
John F. Engelhardt

ABSTRACT The compartmentalized production of superoxide (·O2 −) by endosomal NADPH oxidase is important in the redox-dependent activation of NF-κB following interleukin 1β (IL-1β) stimulation. It remains unclear how ·O2 − produced within endosomes facilitates redox-dependent signaling events in the cytoplasm. We evaluated ·O2 − movement out of IL-1β-stimulated endosomes and whether SOD1 at the endosomal surface mediates redox-signaling events required for NF-κB activation. The relative outward permeability of NADPH-dependent ·O2 − from fractionated endosomes was assessed using membrane-permeable (luminol and lucigenin) and -impermeable (isoluminol) luminescent probes for ·O2 −. In these studies, ∼60% of ·O2 − efflux out of endosomes was inhibited by treatment with either of two anion channel blockers, 4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS) or niflumic acid (NFA). Furthermore, radioisotopic electrodiffusion flux assays on endomembrane proteoliposomes suggested that ·O2 − and Cl− are transported through the same DIDS-sensitive channel(s). Rab5-based immunoaffinity isolation of IL-1β-stimulated early endosomes demonstrated SOD1 recruitment to endosomes harboring the IL-1 receptor. Finally, SOD1-deficient cells were found to be defective in their ability to activate NF-κB following IL-1β stimulation. Together, these results suggest that ·O2 − exits endosomes through a DIDS-sensitive chloride channel(s) and that SOD1-mediated dismutation of ·O2 − at the endosomal surface may produce the localized H2O2 required for redox-activation of NF-κB.

1996 ◽  
Vol 271 (2) ◽  
pp. C579-C588 ◽  
Author(s):  
J. A. Hall ◽  
J. Kirk ◽  
J. R. Potts ◽  
C. Rae ◽  
K. Kirk

The effect of osmotic cell swelling on the permeability of HeLa cells to a range of structurally unrelated solutes including taurine, sorbitol, thymidine, choline, and K+ (96Rb+) was investigated. For each solute tested, reduction in the osmolality of the medium from 300 to 200 mosmol/kgH2O caused a significant increase in the unidirectional influx rate. In each case, the osmotically activated transport component was nonsaturable up to external substrate concentrations of 50 mM. Inhibitors of the swelling-activated anion channel of HeLa cells [quinine, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, niflumate, 1,9-dideoxyforskolin, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), and tamoxifen] blocked the osmotically activated influx of each of the different substrates tested, as well as the osmotically activated efflux of taurine and I-. Tamoxifen and NPPB were similarly effective at blocking the osmotically activated efflux of 96Rb+. The simplest of several hypotheses consistent with the data is that the osmotically activated transport of the different solutes tested here is via a swelling-activated anion-selective channel that has a significant cation permeability and a minimum pore diameter of 8-9 A.


2000 ◽  
Vol 279 (2) ◽  
pp. C295-C307 ◽  
Author(s):  
H. Sauer ◽  
J. Hescheler ◽  
M. Wartenberg

Mechanical strain applied to prostate cancer cells induced an intracellular Ca2+ (Cai 2+) wave spreading with a velocity of 15 μm/s. Cai 2+ waves were not dependent on extracellular Ca2+ and membrane potential because propagation was unaffected in high-K+ and Ca2+-free solution. Waves did not depend on the cytoskeleton or gap junctions because cytochalasin B and nocodazole, which disrupt microfilaments and microtubules, respectively, and 1-heptanol, which uncouples gap junctions, were without effects. Fluorescence recovery after photobleaching experiments revealed an absence of gap junctional coupling. Cai 2+ waves were inhibited by the purinergic receptor antagonists basilen blue and suramin; by pretreatment with ATP, UTP, ADP, UDP, 2-methylthio-ATP, and benzoylbenzoyl-ATP; after depletion of ATP by 2-deoxyglucose; and after ATP scavenging by apyrase. Waves were abolished by the anion channel inhibitors 5-nitro-2-(3-phenylpropylamino)benzoic acid, tamoxifen, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, niflumic acid, and gadolinium. ATP release following strain was significantly inhibited by anion channel blockers. Hence, ATP is secreted via mechanosensitive anion channels and activates purinergic receptors on the same cell or neighboring cells in an autocrine and paracrine manner, thus leading to Cai 2+ wave propagation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3879-3879
Author(s):  
Songmei Yin ◽  
Xiaolin Chen ◽  
Danian Nie ◽  
Shuangfeng Xie ◽  
Liping Ma ◽  
...  

Abstract Objective To explore the effects of chloride channels on the regulations of platelet cytoplasmic free calcium concentration ([Ca2+]i) and platelet aggregation (PAG). Methods Platelet were separated freshly and then activated by thrombin; The chloride channel blockers 4,4′-diisothiocyano-2, 2′-disulfonic acid stilbene (DIDS) or niflumic acid (NFA), and calcium channel blockers 1-{β-[3-(4-methoxyphenyl)propoxy]- 4-methoxyphenethyl}- 1H - imidazole hydrochloride (SK&F96365) or Nifedipine were added to react with the activated platelets. The effects of each agent on platelet [Ca2+]i and PAG were detected. The combine effects and the interactions among chloride channel blockers (DIDS, NFA) and calcium channel blockers (SK&F96365, Nifedipine) were also investigated. Results Both DIDS and NFA [the concentration were12.5, 25, 50, 100 and 200μmol•L−1 respectively] could inhibit the PAG induced by thrombin (1U/ml) and the effect was dose-dependent. Compared with the control, they had no significant effects on resting [Ca2+]i. Compare with the control group, DIDS (100μmol•L−1), SK&F96365 (100μmol•L−1) and Nifedipine (100μmol•L−1) could significantly reduce the PAG, Ca2+ release and Ca2+ influx activated by thrombin in platelet (P<0.05). DIDS (100μmol•L−1) and SK&F96365 (100μmol•L−1) could enhance each other’s effect on reducing the PAG, Ca2+ release and Ca2+ influx (P<0.05). DIDS (100μmol•L−1) and Nifedipine (100μmol•L−1) could enhance each other’s effect on reducing Ca2+ release (P<0.05). NFA (100μmol•L−1) and SK&F96365 (100μmol•L−1) could weaken each other’s effect on Ca2+ release (P<0.05). NFA (100μmol•L−1) and Nifedipine (100μmol•L−1) could weaken each other’s effect on PAG, Ca2+ release and Ca2+ influx activated by thrombin in platelet (P<0.05). Conclusion The chloride channel blockers DIDS and NFA have no effect on the resting [Ca2+]i and the leak calcium influx of platelet. DIDS can inhibit the Ca2+ release, Ca2+ influx and PAG of platelet induced by thrombin, while NFA can only inhibit the Ca2+ release of platelet induced by thrombin. There are interactions between chloride channel blockers and calcium channel blockers in resting [Ca2+]i and PAG of platelet. The opening of chloride channel can influence the cellular calcium movement of platelet.


1997 ◽  
Vol 273 (1) ◽  
pp. C214-C222 ◽  
Author(s):  
V. G. Manolopoulos ◽  
T. Voets ◽  
P. E. Declercq ◽  
G. Droogmans ◽  
B. Nilius

We used a combined biochemical, pharmacological, and electrophysiological approach to study the effects of hyposmotic swelling on organic osmolyte efflux in endothelial cells (EC). In [3H]taurine-loaded monolayers of calf pulmonary artery EC (CPAEC), hyposmolality activated time- and dose-dependent effluxes of [3H]taurine. Swelling-activated [3H]taurine efflux (Jtau swell)in CPAEC was inhibited by the anion channel blockers tamoxifen, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), fenamates, and also quinine (in a pH-dependent manner), ATP, and the phospholipase A2 inhibitor 4-bromophenacyl bromide. In contrast, Jtau swell was partly or totally insensitive to bumetanide, forskolin, phorbol 12-myristate 13-acetate, and staurosporine. Swelling also activated myo-[3H]inositol efflux that was blocked by tamoxifen, NPPB, DIDS, and niflumic acid. Moreover, the cellular content of taurine and other amino acids was significantly reduced in osmotically activated CPAEC. Finally, in whole cell patch-clamp experiments, taurine, glycine, aspartate, and glutamate exhibited significant permeability for swelling-activated anion channels. In conclusion, hyposmotic swelling activates efflux of taurine and other organic osmolytes in EC. In addition, our results suggest that anion channels may provide a pathway for swelling-activated efflux of organic osmolytes in EC.


2012 ◽  
Vol 303 (1) ◽  
pp. C14-C23 ◽  
Author(s):  
Liwei Wang ◽  
Wenbo Ma ◽  
Linyan Zhu ◽  
Dong Ye ◽  
Yuan Li ◽  
...  

Acid-activated chloride currents have been reported in several cell types and may play important roles in regulation of cell function. However, the molecular identities of the channels that mediate the currents are not defined. In this study, activation of the acid-induced chloride current and the possible candidates of the acid-activated chloride channel were investigated in human nasopharyngeal carcinoma cells (CNE-2Z). A chloride current was activated when extracellular pH was reduced to 6.6 from 7.4. However, a further decrease of extracellular pH to 5.8 inhibited the current. The current was weakly outward-rectified and was suppressed by hypertonicity-induced cell shrinkage and by the chloride channel blockers 5-nitro-2–3-phenylpropylamino benzoic acid (NPPB), tamoxifen, and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate (DIDS). The permeability sequence of the channel to anions was I− > Br− > Cl− > gluconate−. Among the ClC chloride channels, ClC-3 and ClC-7 were strongly expressed in CNE-2Z cells. Knockdown of ClC-3 expression with ClC-3 small interfering (si)RNA prevented the activation of the acid-induced current, but silence of ClC-7 expression with ClC-7 siRNA did not significantly affect the current. The results suggest that the chloride channel mediating the acid-induced chloride current was volume sensitive. ClC-3 is a candidate of the channel proteins that mediate or regulate the acid-activated chloride current in nasopharyngeal carcinoma cells.


1995 ◽  
Vol 269 (5) ◽  
pp. C1280-C1286 ◽  
Author(s):  
R. Sanchez-Olea ◽  
C. Fuller ◽  
D. Benos ◽  
H. Pasantes-Morales

To investigate the involvement of a red cell-type anion exchanger in the volume-sensitive amino acid release, the hyposmolarity-evoked release of D-[3H]aspartate and [3H]taurine was examined in three cell lines: 1) wild-type Chinese hamster ovary (CHO-K1) cells, expressing an anion exchanger activity (Cl-/SO4(2-)) functionally similar to the erythroid band 3; 2) a mutant CHO cell type (CHO 605) lacking this anion exchanger activity; and 3) 293 cells in which the Cl-/HCO3(-) anion exchanger is absent. All cell types accumulated D-[3H]aspartate and [3H]taurine under isosmotic conditions, and, similarly, in the three cell lines, cell swelling evoked by hyposmolarity induced a rapid and transient increase in the amino acid efflux. Blockers of the anion exchanger and/or Cl- channels [niflumic acid, dipyridamole, diphenylamine-2-carboxylate,5-nitro-2-(3-phenylpropylamino)-benzoi c acid, and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid] were potent inhibitors of amino acid efflux in the three cell lines. 125I- efflux, used as a marker for Cl- fluxes, was also markedly increased in response to cell swelling in all cell lines, and this efflux was inhibited by the anion exchanger/Cl- channel blockers. These results do not support a role for an anion exchanger in the hyposmolarity-induced amino acid efflux and suggest that amino acids and Cl- may be transported by the same or a similar mechanism, presumably an anion channel-like structure.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3939-3939
Author(s):  
Songmei Yin ◽  
Yiqing Li ◽  
Shuangfeng Xie ◽  
Danian Nie ◽  
Haiming Li ◽  
...  

Abstract Objective To explore the effects and interactions of GPIIb/IIIa antagonists and chloride channel blockers on the platelet cytoplasmic free calcium ([Ca2+]i ). Methods We washed and suspended fresh platelets with Hepes buffer containing 0.1% bovine serum albumin (BSA), then loaded platelets with 5μmol/L Fura-3/AM. Then RGDS, the GPIIb/IIIa antagonists, and the chloride channel blockers 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene(DIDS) or niflumic acid(NFA) were added to the platelet suspension. After 2 minutes incubating, we observed the effects and interactions of GPIIb/IIIa antagonists and chloride channel blockers on platelet [Ca2+]i by measuring the Fura-3 fluorescence intensity. Results 1. Effects of GPIIb/IIIa antagonists and chloride channel blockers on platelet [Ca2+]i. The fluorescence intensity of resting platelet [Ca2+]i were 369.6±62.2, 381.9±72.4, 392.8 ±69.9 after adding RGDS(250 μmol/L), DIDS(100 μmol/L) or NFA( 100 μmol/L) respectively. every agent had no significant effect on resting [Ca2+]i (p>0.05). After thrombin(0.03 U/ml) stimulating and adding RGDS(250 μmol/L), DIDS(100 μmol/L) or NFA( 100 μmol/L), the platelet [Ca2+]i were 883.9±107.0, 789.8±99.8, 564.1±79.4. Compare with the control(977.9±108.8), the three agents could inhibit the elevation of [Ca2+]i stimulated by thrombin (p<0.05). The inhibiting rates were (9.37±7.5)%, (18.7±10.4)% and (41.8±10.1)% respectively. 2. Combined effects of GPIIb/IIIa antagonists and chloride channel blockers The fluorescence intensity of resting platelet [Ca2+]i was 383.9±67.9 after incubated with RGDS and DIDS. That had no significant effects. When platelets were stimulated by thrombin (0.03 U/ml), the combined inhibition rate was (24.4±10.8)%, RGDS and DIDS couldn’t weaken or enhance each other on thrombin-induced elevation of [Ca2+]i (p>0.05). Neither RGDS nor NFA had significant combined effects on resting [Ca2+]i(p>0.05). The combined inhibition rate was (46.0±7.3)%, they had no interactions too(p>0.05). Conclusion The GPIIb/IIIa antagonists RGDS and the chloride channel blockers DIDS or NFA have no effect on resting platelet [Ca2+]i. All of them can inhibit the elevation of platelet [Ca2+]i induced by thrombin. There are no interactions between GPIIb/IIIa antagonists RGDS and chloride channel blockers (DIDS or NFA) in resting platelet [Ca2+]i and elevation of platelet [Ca2+]i induced by thrombin, and their effects were independent.


2006 ◽  
Vol 290 (6) ◽  
pp. C1666-C1677 ◽  
Author(s):  
Derek R. Laver ◽  
Katherine M. Bradley

Block of a sarcoplasmic reticulum anion channel (SCl channel) by disulfonic stilbene derivatives [DIDS, dibenzamidostilbene-2,2′-disulfonic acid (DBDS), and 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNDS)] was investigated in planar bilayers using SO[Formula: see text] as the conducting ion. All molecules caused reversible voltage-dependent channel block when applied to either side of the membrane. DIDS also produced nonreversible channel block from both sides within 1–3 min. Reversible inhibition was associated with a decrease in channel open probability and mean open duration but not with any change in channel conductance. The half inhibitory concentration for cis- and trans-inhibition had voltage dependencies with minima of 190 nM and 33 μM for DBDS and 3.4 and 55 μM for DNDS. Our data supports a permeant blocker mechanism, in which stilbenes block SCl channels by lodging in the permeation pathway, where they may dissociate to either side of the membrane and thus permeate the channel. The stilbenes acted as open channel blockers where the binding of a single molecule occludes the channel. DBDS and DNDS, from opposite sides of the membrane, competed for common sites on the channel. Dissociation rates exhibited biphasic voltage dependence, indicative of two dissociation processes associated with ion movement in opposite directions within the trans-membrane electric field. The kinetics of DNDS and DBDS inhibition predict that there are two stilbene sites in the channel that are separated by 14–24 Å and that the pore constriction is ∼10 Å in diameter.


1994 ◽  
Vol 266 (1) ◽  
pp. C172-C178 ◽  
Author(s):  
H. Pasantes-Morales ◽  
R. A. Murray ◽  
R. Sanchez-Olea ◽  
J. Moran

The permeability of the hyposmolarity-activated pathway to amino acids and polyols in cultured astrocytes was examined following the change in rate and direction of regulatory volume decrease (RVD) when the extracellular concentration of the osmolytes was increased to reverse their intracellular-extracellular concentration gradient. Activation of the pathway by swelling would allow those permeable osmolytes to enter the cell and inhibit RVD. The pathway was found to be permeable to neutral amino acids, with beta-amino acids (beta-alanine = taurine > gamma-aminobutyric acid) more permeable than alpha-amino acids. Glycine, alanine, threonine, phenylalanine, and asparagine, but not glutamine, were permeable through this pathway. Aspartate was more permeable than glutamate, and K+ and not Na+ must be the accompanying cation. Basic amino acids were excluded. The dimension of the amino acid pore activated by hyposmolarity seems to be at the limit of glutamate-glutamine size. Influx rather than efflux of amino acids was observed when extracellular concentration was greater than intracellular concentration, with differences in the amount accumulated by cells correlating with their efficiency as RVD blockers. Influx of taurine (as representative of permeable amino acids) was inhibited by the Cl- channel blockers/exchangers 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (40%) and dipyridamole (85%) , and it is suggested that amino acids permeate through an anion channel. Sorbitol and mannitol, but not inositol, exhibited a small inhibitory effect on the later phase of RVD, whereas inositol slightly accelerated RVD.


1998 ◽  
Vol 274 (4) ◽  
pp. R1039-R1049 ◽  
Author(s):  
Michael J. O’Donnell ◽  
Mark R. Rheault ◽  
Shireen A. Davies ◽  
Phillipe Rosay ◽  
Brian J. Harvey ◽  
...  

Anion conductance across the Drosophila melanogaster Malpighian (renal) tubule was investigated by a combination of physiological and transgenic techniques. Patch-clamp recordings identified clusters of 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS)-sensitive “maxi-chloride” channels in a small domain of the apical membrane. Fluid secretion assays demonstrated sensitivity to the chloride channel blockers 5-nitro-2-(3-phenylpropylamino)benzoic acid, diphenylamine-2-carboxylate, anthracene-9-carboxylic acid, and niflumic acid. Electrophysiological analysis showed that the calcium-mediated increase in anion conductance was blocked by the same agents. Vibrating probe analysis revealed a small number of current density hot spots, coincident with “stellate” cells, that were abolished by low-chloride saline or the same chloride channel blockers. GAL-4-targeted expression of an aequorin transgene revealed that the neurohormone leucokinin elicits a rapid increase in intracellular calcium levels in stellate cells that precedes the fastest demonstrable physiological effect. Taken together, these data show that leucokinins act on stellate cells through intracellular calcium to increase transcellular chloride conductance through channels. As electrogenic cation conductance is confined to principal cells, the two pathways are spatially segregated in this tissue.


Sign in / Sign up

Export Citation Format

Share Document