scholarly journals Stabilization of the Retinoblastoma Protein by A-Type Nuclear Lamins Is Required for INK4A-Mediated Cell Cycle Arrest

2006 ◽  
Vol 26 (14) ◽  
pp. 5360-5372 ◽  
Author(s):  
Ryan T. Nitta ◽  
Samantha A. Jameson ◽  
Brian A. Kudlow ◽  
Lindus A. Conlan ◽  
Brian K. Kennedy

ABSTRACT Mutations in the LMNA gene, which encodes all A-type lamins, including lamin A and lamin C, cause a variety of tissue-specific degenerative diseases termed laminopathies. Little is known about the pathogenesis of these disorders. Previous studies have indicated that A-type lamins interact with the retinoblastoma protein (pRB). Here we probe the functional consequences of this association and further examine links between nuclear structure and cell cycle control. Since pRB is required for cell cycle arrest by p16ink4a, we tested the responsiveness of multiple lamin A/C-depleted cell lines to overexpression of this CDK inhibitor and tumor suppressor. We find that the loss of A-type lamin expression results in marked destabilization of pRB. This reduction in pRB renders cells resistant to p16ink4a-mediated G1 arrest. Reintroduction of lamin A, lamin C, or pRB restores p16ink4a-responsiveness to Lmna −/− cells. An array of lamin A mutants, representing a variety of pathologies as well as lamin A processing mutants, was introduced into Lmna −/− cells. Of these, a mutant associated with mandibuloacral dysplasia (MAD R527H), as well as two lamin A processing mutants, but not other disease-associated mutants, failed to restore p16ink4a responsiveness. Although our findings do not rule out links between altered pRB function and laminopathies, they fail to support such an assertion. These findings do link lamin A/C to the functional activation of a critical tumor suppressor pathway and further the possibility that somatic mutations in LMNA contribute to tumor progression.

2002 ◽  
Vol 76 (20) ◽  
pp. 10559-10568 ◽  
Author(s):  
Anna-Marija Helt ◽  
Jens Oliver Funk ◽  
Denise A. Galloway

ABSTRACT The human papillomavirus (HPV) type 16 E7 oncoprotein must inactivate the retinoblastoma tumor suppressor (Rb) pathway to bypass G1 arrest. However, E7 C-terminal mutants that were able to inactivate Rb were unable to bypass DNA damage-induced G1 arrest and keratinocyte senescence, suggesting that the E7 C terminus may target additional G1 regulators. The E7 C-terminal mutant proteins E7 CVQ68-70AAA and E7 Δ79-83 (deletion of positions 79 through 83) were further tested in several models of cell cycle arrest associated with elevated levels of p21. C-terminal mutations rendered E7 unable to induce S phase and endoreduplication in differentiated keratinocytes and rendered it less efficient in delaying senescence of human mammary epithelial cells. Interestingly, when cell cycle arrest was induced with a peptide form of p21, the E7 C-terminal mutants were deficient in overcoming arrest, whereas a mutant defective in Rb binding was competent in inhibiting G1 arrest. These results suggest that the inactivation of both p21 and Rb by E7 contributes to subversion of cell cycle control in normal human epithelia but that neither p21 nor Rb inactivation alone is sufficient.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Christophe Nicot

Tumor suppressor functions are essential to control cellular proliferation, to activate the apoptosis or senescence pathway to eliminate unwanted cells, to link DNA damage signals to cell cycle arrest checkpoints, to activate appropriate DNA repair pathways, and to prevent the loss of adhesion to inhibit initiation of metastases. Therefore, tumor suppressor genes are indispensable to maintaining genetic and genomic integrity. Consequently, inactivation of tumor suppressors by somatic mutations or epigenetic mechanisms is frequently associated with tumor initiation and development. In contrast, reactivation of tumor suppressor functions can effectively reverse the transformed phenotype and lead to cell cycle arrest or death of cancerous cells and be used as a therapeutic strategy. Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoproliferative disease associated with infection of CD4 T cells by the Human T-cell Leukemia Virus Type 1 (HTLV-I). HTLV-I-associated T-cell transformation is the result of a multistep oncogenic process in which the virus initially induces chronic T-cell proliferation and alters cellular pathways resulting in the accumulation of genetic defects and the deregulated growth of virally infected cells. This review will focus on the current knowledge of the genetic and epigenetic mechanisms regulating the inactivation of tumor suppressors in the pathogenesis of HTLV-I.


2000 ◽  
Vol 20 (1) ◽  
pp. 233-241 ◽  
Author(s):  
Zhengming Gu ◽  
Cathy Flemington ◽  
Thomas Chittenden ◽  
Gerard P. Zambetti

ABSTRACT DNA damage and/or hyperproliferative signals activate the wild-type p53 tumor suppressor protein, which induces a G1 cell cycle arrest or apoptosis. Although the mechanism of p53-mediated cell cycle arrest is fairly well defined, the p53-dependent pathway regulating apoptosis is poorly understood. Here we report the functional characterization of murine ei24 (also known asPIG8), a gene directly regulated by p53, whose overexpression negatively controls cell growth and induces apoptotic cell death. Ectopic ei24 expression markedly inhibits cell colony formation, induces the morphological features of apoptosis, and reduces the number of β-galactosidase-marked cells, which is efficiently blocked by coexpression of Bcl-XL. Theei24/PIG8 gene is localized on human chromosome 11q23, a region frequently altered in human cancers. These results suggest that ei24 may play an important role in negative cell growth control by functioning as an apoptotic effector of p53 tumor suppressor activities.


2018 ◽  
Vol 38 (17) ◽  
Author(s):  
Shakhawoat Hossain ◽  
Hiroaki Iwasa ◽  
Aradhan Sarkar ◽  
Junichi Maruyama ◽  
Kyoko Arimoto-Matsuzaki ◽  
...  

ABSTRACT RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers, and its low expression level is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in a p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression by suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73 target genes via pRb and E2F1 in a p53-negative background. Finally, we confirmed that RASSF6 depletion induces polyploid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with loss of function of p53, and pRb is implicated in this function of RASSF6.


Oncogene ◽  
2005 ◽  
Vol 24 (36) ◽  
pp. 5606-5618 ◽  
Author(s):  
Christopher J Wallick ◽  
Ivonne Gamper ◽  
Mike Thorne ◽  
David J Feith ◽  
Kelsie Y Takasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document