Expression and secretion of transforming growth factor-beta by bleomycin-stimulated rat alveolar macrophages

1993 ◽  
Vol 264 (1) ◽  
pp. L36-L42 ◽  
Author(s):  
E. M. Denholm ◽  
S. M. Rollins

Bleomycin-induced fibrosis in rodents has been used extensively as a model of human pulmonary fibrosis. The influx of monocytes observed during the early stages of fibrosis is at least partially regulated by the elaboration of chemotactic factors in the lung. Exposure of alveolar macrophages (AM phi) to bleomycin either in vivo or in vitro stimulated secretion of monocyte chemotactic activity (MCA). This MCA has been previously characterized as being primarily due to fibronectin fragments. The present experiments revealed that bleomycin also induced AM phi to secrete a second chemotactic factor, transforming growth factor-beta (TGF-beta). However, the TGF-beta secreted by macrophages was in latent form, since no TGF-beta activity was detected unless AM phi conditioned medium (CM) was acid-activated. After acidification, chemotactic activity in CM from AM phi stimulated with bleomycin in vitro was increased by 3.6, whereas activity in AM phi CM from fibrotic rats increased by 2 and that of a bleomycin-stimulated AM phi cell line increased by 1.6. This acid-activatable chemotactic activity was inhibited by antibody to TGF-beta. Bleomycin-stimulated AM phi s secreted significantly more TGF-beta than did unstimulated controls. Further, in vitro exposure of AM phi to bleomycin induced TGF-beta mRNA expression in a time- and concentration-dependent manner, with maximal mRNA being detected following a 16-h incubation with 1 microgram/ml bleomycin.

Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1679-1685 ◽  
Author(s):  
K Fan ◽  
Q Ruan ◽  
L Sensenbrenner ◽  
B Chen

Abstract Transforming growth factor-beta (TGF-beta) is a family of polypeptide growth factors with multiple functional activities. Recent studies suggest that TGF-beta is a selective inhibitor of hematopoietic cells. In this report, we study the effect of TGF-beta 1 on the proliferation of murine peritoneal exudate macrophages (PEM) in response to purified murine recombinant granulocyte-macrophage colony-stimulating factor (rMuGM-CSF) and human recombinant M-CSF (rHuM-CSF). In mice, PEM and other types of tissue macrophages display multiple types of receptors for CSFs and respond to them, either alone or in combination, to undergo extensive proliferation in vitro. Recombinant human TGF-beta 1 (rHuTGF-beta 1) (0.1 to 1.0 ng/mL) markedly enhanced the growth of PEM in response to rMuGM-CSF but inhibited their responsiveness to rHuM- CSF. Similar effects of rHuTGF-beta 1 were also detected using murine pulmonary alveolar macrophages (PAM) and bone marrow-derived macrophages (BMDM). Receptor binding assays using iodinated rMuGM-CSF and rHuM-CSF showed that rHuTGF-beta 1 treatment greatly enhanced the expression of GM-CSF receptors in PEM, in a time- and dose-dependent manner, suggesting a possible mechanism for the synergistic effect of TGF-beta 1. On the other hand, the expression of M-CSF receptors was not affected by TGF-beta 1 treatment. Analysis by mRNA PCR showed that the synergistic effect of TGF-beta 1 is not due to autocrine CSFs produced by treated cells. Our results suggest that TGF-beta 1 is an important regulator of macrophage proliferation. Depending on the types of CSFs present, TGF-beta 1 may act either as a growth promoter or inhibitor.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1679-1685 ◽  
Author(s):  
K Fan ◽  
Q Ruan ◽  
L Sensenbrenner ◽  
B Chen

Transforming growth factor-beta (TGF-beta) is a family of polypeptide growth factors with multiple functional activities. Recent studies suggest that TGF-beta is a selective inhibitor of hematopoietic cells. In this report, we study the effect of TGF-beta 1 on the proliferation of murine peritoneal exudate macrophages (PEM) in response to purified murine recombinant granulocyte-macrophage colony-stimulating factor (rMuGM-CSF) and human recombinant M-CSF (rHuM-CSF). In mice, PEM and other types of tissue macrophages display multiple types of receptors for CSFs and respond to them, either alone or in combination, to undergo extensive proliferation in vitro. Recombinant human TGF-beta 1 (rHuTGF-beta 1) (0.1 to 1.0 ng/mL) markedly enhanced the growth of PEM in response to rMuGM-CSF but inhibited their responsiveness to rHuM- CSF. Similar effects of rHuTGF-beta 1 were also detected using murine pulmonary alveolar macrophages (PAM) and bone marrow-derived macrophages (BMDM). Receptor binding assays using iodinated rMuGM-CSF and rHuM-CSF showed that rHuTGF-beta 1 treatment greatly enhanced the expression of GM-CSF receptors in PEM, in a time- and dose-dependent manner, suggesting a possible mechanism for the synergistic effect of TGF-beta 1. On the other hand, the expression of M-CSF receptors was not affected by TGF-beta 1 treatment. Analysis by mRNA PCR showed that the synergistic effect of TGF-beta 1 is not due to autocrine CSFs produced by treated cells. Our results suggest that TGF-beta 1 is an important regulator of macrophage proliferation. Depending on the types of CSFs present, TGF-beta 1 may act either as a growth promoter or inhibitor.


1991 ◽  
Vol 173 (3) ◽  
pp. 589-597 ◽  
Author(s):  
G Poli ◽  
A L Kinter ◽  
J S Justement ◽  
P Bressler ◽  
J H Kehrl ◽  
...  

The pleiotropic immunoregulatory cytokine transforming growth factor beta (TGF-beta) potently suppresses production of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome, in the chronically infected promonocytic cell line U1. TGF-beta significantly (50-90%) inhibited HIV reverse transcriptase production and synthesis of viral proteins in U1 cells stimulated with phorbol myristate acetate (PMA) or interleukin 6 (IL-6). Furthermore, TGF-beta suppressed PMA induction of HIV transcription in U1 cells. In contrast, TGF-beta did not significantly affect the expression of HIV induced by tumor necrosis factor alpha (TNF-alpha). These suppressive effects were not mediated via the induction of interferon alpha (IFN-alpha). TGF-beta also suppressed HIV replication in primary monocyte-derived macrophages infected in vitro, both in the absence of exogenous cytokines and in IL-6-stimulated cultures. In contrast, no significant effects of TGF-beta were observed in either a chronically infected T cell line (ACH-2) or in primary T cell blasts infected in vitro. Therefore, TGF-beta may play a potentially important role as a negative regulator of HIV expression in infected monocytes or tissue macrophages in infected individuals.


1991 ◽  
Vol 173 (5) ◽  
pp. 1121-1132 ◽  
Author(s):  
R A Fava ◽  
N J Olsen ◽  
A E Postlethwaite ◽  
K N Broadley ◽  
J M Davidson ◽  
...  

We have studied the consequences of introducing human recombinant transforming growth factor beta 1 (hrTGF-beta 1) into synovial tissue of the rat, to begin to better understand the significance of the fact that biologically active TGF-beta is found in human arthritic synovial effusions. Within 4-6 h after the intra-articular injection of 1 microgram of hrTGF-beta 1 into rat knee joints, extensive recruitment of polymorphonuclear leukocytes (PMNs) was observed. Cytochemistry and high resolution histological techniques were used to quantitate the influx of PMNs, which peaked 6 h post-injection. In a Boyden chamber assay, hrTGF-beta 1 at 1-10 fg/ml elicited a chemotactic response from PMNs greater in magnitude than that evoked by FMLP, establishing that TGF-beta 1 is an effective chemotactic agent for PMNs in vitro as well as in vivo. That PMNs may represent an important source of TGF-beta in inflammatory infiltrates was strongly suggested by a demonstration that stored TGF-beta 1 was secreted during phorbol myristate acetate-stimulated degranulation in vitro. Acid/ethanol extracts of human PMNs assayed by ELISA contained an average of 355 ng of TGF/beta 1 per 10(9) cells potentially available for secretion during degranulation of PMNs. [3H]Thymidine incorporation in vivo and autoradiography of tissue sections revealed that widespread cell proliferation was triggered by TGF-beta 1 injection. Synovial lining cells and cells located deep within the subsynovial connective tissue were identified as sources of at least some of the new cells that contribute to TGF-beta 1-induced hyperplasia. Our results demonstrate that TGF-beta is capable of exerting pathogenic effects on synovial tissue and that PMNs may represent a significant source of the TGF-beta present in synovial effusions.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 596-602 ◽  
Author(s):  
JR Keller ◽  
IK Mcniece ◽  
KT Sill ◽  
LR Ellingsworth ◽  
PJ Quesenberry ◽  
...  

Abstract We previously reported that transforming growth factor beta (TGF-beta) selectively inhibits colony-stimulating factor-driven hematopoietic progenitor cell growth. We report here that TGF-beta 1 can act directly on hematopoietic progenitors to inhibit the growth of the most primitive progenitors measurable in vitro. Highly enriched populations of hematopoietic progenitor cells were obtained by isolating lineage negative (Lin-), Thy-1-positive (Thy-1+) fresh bone marrow cells, or by isolating cells from interleukin-3 (IL-3) supplemented bone marrow cultures expressing Thy-1 antigen with the fluorescent activated cell sorter. TGF-beta 1 inhibited IL-3-induced Thy-1 expression on Thy-1- negative (Thy-1-) bone marrow cells in a dose-dependent manner with an ED50 of 5 to 10 pmol/L. In addition, TGF-beta 1 inhibited the formation of multipotent and mixed colonies by isolated Thy-1+ cells, while single lineage granulocyte and macrophage colonies were not affected. The growth of Thy-1+ Lin- cells incubated as single cells in Terasaki plates in medium supplemented with IL-3 were inhibited by TGF-beta, demonstrating a direct inhibitory effect. Hematopoietic stem cells, which have a high proliferative potential (HPP) when responding to combinations of growth factors in vitro, have been detected in the bone marrow of normal mice and mice surviving a single injection of 5- fluorouracil. TGF-beta 1 inhibited the growth of all subpopulations of HPP colony forming cells (CFC) in a dose-dependent manner with an ED50 of 5 to 10 pmol/L. Thus, TGF-beta directly inhibits the growth of the most immature hematopoietic cells measurable in vitro.


1994 ◽  
Vol 179 (3) ◽  
pp. 1041-1045 ◽  
Author(s):  
R Alam ◽  
P Forsythe ◽  
S Stafford ◽  
Y Fukuda

Hematopoietins, interleukin (IL)-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF) have previously been shown to prolong eosinophil survival and abrogate apoptosis. The objective of this study was to investigate the effect of transforming growth factor beta (TGF-beta) on eosinophil survival and apoptosis. Eosinophils from peripheral blood of mildly eosinophilic donors were isolated to > 97% purity using discontinuous Percoll density gradient. Eosinophils were cultured with hematopoietins with or without TGF-beta for 4 d and their viability was assessed. We confirmed previous observations that hematopoietins prolonged eosinophil survival and inhibited apoptosis. TGF-beta at concentrations > or = 10(-12) M abrogated the survival-prolonging effects of hematopoietins in a dose-dependent manner and induced apoptosis as determined by DNA fragmentation in agarose gels. The effect of TGF-beta was blocked by an anti-TGF-beta antibody. The anti-TGF-beta antibody also prolonged eosinophil survival on its own. The culture of eosinophils with IL-3 and GM-CSF stimulated the synthesis of GM-CSF and IL-5, respectively, suggesting an autocrine mechanism of growth factor production. TGF-beta inhibited the synthesis of GM-CSF and IL-5 by eosinophils. TGF-beta did not have any effect on the expression of GM-CSF receptors on eosinophils. We also studied the effect of TGF-beta on eosinophil function and found that TGF-beta inhibited the release of eosinophil peroxidase. Thus, TGF-beta seems to inhibit eosinophil survival and function. The inhibition of endogenous synthesis of hematopoietins may be one mechanism by which TGF-beta blocks eosinophil survival and induces apoptosis.


1993 ◽  
Vol 120 (4) ◽  
pp. 995-1002 ◽  
Author(s):  
R Flaumenhaft ◽  
M Abe ◽  
Y Sato ◽  
K Miyazono ◽  
J Harpel ◽  
...  

Transforming growth factor beta (TGF-beta) is released from cells in a latent form consisting of the mature growth factor associated with an aminoterminal propeptide and latent TGF-beta binding protein (LTBP). The endogenous activation of latent TGF-beta has been described in co-cultures of endothelial and smooth muscle cells. However, the mechanism of this activation remains unknown. Antibodies to native platelet LTBP and to a peptide fragment of LTBP inhibit in a dose-dependent manner the activation of latent TGF-beta normally observed when endothelial cells are cocultured with smooth muscle cells. Inhibition of latent TGF-beta activation was also observed when cells were co-cultured in the presence of an excess of free LTBP. These data represent the first demonstration of a function for the LTBP in the extracellular regulation of TGF-beta activity and indicate that LTBP participates in the activation of latent TGF-beta, perhaps by concentrating the latent growth factor on the cell surface where activation occurs.


1987 ◽  
Vol 105 (2) ◽  
pp. 965-975 ◽  
Author(s):  
L M Wakefield ◽  
D M Smith ◽  
T Masui ◽  
C C Harris ◽  
M B Sporn

Scatchard analyses of the binding of transforming growth factor-beta (TGF-beta) to a wide variety of different cell types in culture revealed the universal presence of high affinity (Kd = 1-60 pM) receptors for TGF-beta on every cell type assayed, indicating a wide potential target range for TGF-beta action. There was a strong (r = +0.85) inverse relationship between the receptor affinity and the number of receptors expressed per cell, such that at low TGF-beta concentrations, essentially all cells bound a similar number of TGF-beta molecules per cell. The binding of TGF-beta to various cell types was not altered by many agents that affect the cellular response to TGF-beta, suggesting that modulation of TGF-beta binding to its receptor may not be a primary control mechanism in TGF-beta action. Similarly, in vitro transformation resulted in only relatively small changes in the cellular binding of TGF-beta, and for those cell types that exhibited ligand-induced down-regulation of the receptor, down-regulation was not extensive. Thus the strong conservation of binding observed between cell types is also seen within a given cell type under a variety of conditions, and receptor expression appears to be essentially constitutive. Finally, the biologically inactive form of TGF-beta, which constitutes greater than 98% of autocrine TGF-beta secreted by all of the twelve different cell types assayed, was shown to be unable to bind to the receptor without prior activation in vitro. It is proposed that this may prevent premature interaction of autocrine ligand and receptor in the Golgi apparatus.


1991 ◽  
Vol 174 (3) ◽  
pp. 539-545 ◽  
Author(s):  
J S Silva ◽  
D R Twardzik ◽  
S G Reed

The effects of transforming growth factor beta (TGF-beta) on interferon gamma-mediated killing of the intracellular protozoan parasite Trypanosoma cruzi and on the course of T. cruzi infection in mice were investigated. Spleen cells from mice with acute T. cruzi infections were found to produce elevated levels of biologically active TGF-beta in vitro, and the possibility that TGF-beta may mediate certain aspects of T. cruzi infection was then addressed. When mouse peritoneal macrophages were treated with TGF-beta in vitro, the ability of IFN-gamma to activate intracellular inhibition of the parasite was blocked. This occurred whether cells were treated with TGF-beta either before or after IFN-gamma treatment. TGF-beta treatment also blocked the T. cruzi-inhibiting effects of IGN-gamma on human macrophages. Additionally, treatment of human macrophages with TGF-beta alone led to increased parasite replication in these cells. The effects of TGF-beta on T. cruzi infection in vivo were then investigated. Susceptible C57BL/6 mice developed higher parasitemias and died earlier when treated with TGF-beta during the course of infection. Resistant C57BL/6 x DBA/2 F1 mice treated with TGF-beta also had increased parasitemias, and 50% mortality, compared with no mortality in infected, saline-treated controls. A single dose of TGF-beta, given at the time of infection, was sufficient to significantly decrease resistance to infection in F1 mice and to exacerbate infection in susceptible C57BL/6 mice. Furthermore, a single injection of TGF-beta was sufficient to counter the in vivo protective effects of IFN-gamma. We conclude that TGF-beta, produced during acute T. cruzi infection in mice, is a potent inhibitor of the effects of macrophage activating cytokines in vivo and in vitro and may play a role in regulating infection.


Blood ◽  
1992 ◽  
Vol 79 (3) ◽  
pp. 619-626 ◽  
Author(s):  
DJ Kuter ◽  
DM Gminski ◽  
RD Rosenberg

Abstract Using a rat bone marrow culture system, the effect of transforming growth factor beta 1 (TGF beta 1) on megakaryocyte growth and endoreduplication has been studied. Purified human platelet TGF beta 1 inhibited the number of megakaryocytes that appeared in culture at a half-maximal concentration of 0.66 +/- 0.21 ng/mL and inhibited megakaryocyte endoreduplication at a half-maximal concentration of 0.14 +/- 0.08 ng/mL. Under identical conditions, growth of erythroid precursors was half-maximally inhibited at a concentration of 0.125 ng/mL while myeloid growth was not inhibited at concentrations of TGF beta 1 up to 25 ng/mL. These profound inhibitory effects on megakaryocyte growth and endomitosis suggested that TGF beta might play a role in megakaryocytopoiesis. Therefore, we explored the effect of TGF beta in three different experimental situations by using a neutralizing antibody to TGF beta: (1) Serum but not plasma was found to inhibit the number and ploidy of megakaryocytes that grew in vitro. This inhibitory activity was completely neutralized by antibody to TGF beta or on treatment with dithiothreitol. (2) Plasma from thrombocytotic rats was observed to decrease megakaryocyte ploidy on culture but this effect was not prevented by the addition of antibody to TGF beta. (3) Plasma from thrombocytopenic but not normal rats increased megakaryocyte ploidy on culture. Addition of antibody to TGF beta did not alter these results. Therefore, TGF beta is a potent inhibitor of the number and ploidy of megakaryocytes and accounts for all the inhibition seen when megakaryocytes are cultured in serum. However, the differences in effect on megakaryocyte growth that we observe between normal, thrombocytopenic, and thrombocytotic plasmas are not due to variations in the amount of TGF beta. Furthermore, our results show that release of TGF beta from megakaryocytes during culture does not act as an autocrine regulator of megakaryocyte ploidy in vitro.


Sign in / Sign up

Export Citation Format

Share Document