Gene replacement with one-sided homologous recombination

1992 ◽  
Vol 12 (1) ◽  
pp. 360-367
Author(s):  
N Berinstein ◽  
N Pennell ◽  
C A Ottaway ◽  
M J Shulman

Homologous recombination is now routinely used in mammalian cells to replace endogenous chromosomal sequences with transferred DNA. Vectors for this purpose are traditionally constructed so that the replacement segment is flanked on both sides by DNA sequences which are identical to sequences in the chromosomal target gene. To test the importance of bilateral regions of homology, we measured recombination between transferred and chromosomal immunoglobulin genes when the transferred segment was homologous to the chromosomal gene only on the 3' side. In each of the four recombinants analyzed, the 5' junction was unique, suggesting that it was formed by nonhomologous, i.e., random or illegitimate, recombination. In two of the recombinants, the 3' junction was apparently formed by homologous recombination, while in the other two recombinants, the 3' junction as well as the 5' junction might have involved a nonhomologous crossover. As reported previously, we found that the frequency of gene targeting increases monotonically with the length of the region of homology. Our results also indicate that targeting with fragments bearing one-sided homology can be as efficient as with fragments with bilateral homology, provided that the overall length of homology is comparable. The frequency of these events suggests that the immunoglobulin locus is particularly susceptible to nonhomologous recombination. Vectors designed for one-sided homologous recombination might be advantageous for some applications in genetic engineering.

1992 ◽  
Vol 12 (1) ◽  
pp. 360-367 ◽  
Author(s):  
N Berinstein ◽  
N Pennell ◽  
C A Ottaway ◽  
M J Shulman

Homologous recombination is now routinely used in mammalian cells to replace endogenous chromosomal sequences with transferred DNA. Vectors for this purpose are traditionally constructed so that the replacement segment is flanked on both sides by DNA sequences which are identical to sequences in the chromosomal target gene. To test the importance of bilateral regions of homology, we measured recombination between transferred and chromosomal immunoglobulin genes when the transferred segment was homologous to the chromosomal gene only on the 3' side. In each of the four recombinants analyzed, the 5' junction was unique, suggesting that it was formed by nonhomologous, i.e., random or illegitimate, recombination. In two of the recombinants, the 3' junction was apparently formed by homologous recombination, while in the other two recombinants, the 3' junction as well as the 5' junction might have involved a nonhomologous crossover. As reported previously, we found that the frequency of gene targeting increases monotonically with the length of the region of homology. Our results also indicate that targeting with fragments bearing one-sided homology can be as efficient as with fragments with bilateral homology, provided that the overall length of homology is comparable. The frequency of these events suggests that the immunoglobulin locus is particularly susceptible to nonhomologous recombination. Vectors designed for one-sided homologous recombination might be advantageous for some applications in genetic engineering.


Genetics ◽  
1994 ◽  
Vol 136 (2) ◽  
pp. 597-605
Author(s):  
A S Waldman

Abstract Mouse LTK- cells were transfected with a pair of defective Herpes simplex virus thymidine kinase (tk) genes. One tk gene had an 8-bp insertion mutation while the second gene had a 100-bp inversion. Extrachromosomal homologous recombination leading to the reconstruction of a functional tk gene was monitored by selecting for tk positive cells using medium supplemented with hypoxanthine/aminopterin/thymidine. To assess whether the search for homology may be a rate-limiting step of recombination, we asked whether the presence of an excess number of copies of a tk gene possessing both the insertion and inversion mutations could inhibit recombination between the singly mutated tk genes. Effective competitive inhibition would require that homology searching (homologous pairing) occur rapidly and efficiently. We cotransfected plasmid constructs containing the singly mutated genes in the presence or absence of competitor sequences in various combinations of linear or circular forms. We observed effective inhibition by the competitor DNA in six of the seven combinations studied. A lack of inhibition was observed only when the insertion mutant gene was cleaved within the insertion mutation and cotransfected with the two other molecules in circular form. Additional experiments suggested that homologous interactions between two DNA sequences may compete in trans with recombination between two other sequences. We conclude that homology searching is not a rate-limiting step of extrachromosomal recombination in mammalian cells. Additionally, we speculate that a limiting factor is involved in a recombination step following homologous pairing and has a high affinity for DNA termini.


1985 ◽  
Vol 5 (1) ◽  
pp. 59-69 ◽  
Author(s):  
K R Folger ◽  
K Thomas ◽  
M R Capecchi

We have examined the mechanism of homologous recombination between plasmid molecules coinjected into cultured mammalian cells. Cell lines containing recombinant DNA molecules were obtained by selecting for the reconstruction of a functional Neor gene from two plasmids that bear different amber mutations in the Neor gene. In addition, these plasmids contain restriction-length polymorphisms within and near the Neor gene. These polymorphisms did not confer a selectable phenotype but were used to identify and categorize selected and nonselected recombinant DNA molecules. The striking conclusion from this analysis is that the predominant mechanism for the exchange of information between coinjected plasmid molecules over short distances (i.e., less than 1 kilobase) proceeds via nonreciprocal homologous recombination. The frequency of homologous recombination between coinjected plasmid molecules in cultured mammalian cells is extremely high, approaching unity. We demonstrate that this high frequency requires neither a high input of plasmid molecules per cell nor a localized high concentration of plasmid DNA within the nucleus. Thus, it appears that plasmid molecules, once introduced into the nucleus, have no difficulty seeking each other out and participating in homologous recombination even in the presence of a vast excess of host DNA sequences. Finally, we show that most of the homologous recombination events occur within a 1-h interval after the introduction of plasmid DNA into the cell nucleus.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 809-821
Author(s):  
Julang Li ◽  
Mark D Baker

Abstract The “ends-out” or omega (Ω)-form gene replacement vector is used routinely to perform targeted genome modification in a variety of species and has the potential to be an effective vehicle for gene therapy. However, in mammalian cells, the frequency of this reaction is low and the mechanism unknown. Understanding molecular features associated with gene replacement is important and may lead to an increase in the efficiency of the process. In this study, we investigated gene replacement in mammalian cells using a powerful assay system that permits efficient recovery of the product(s) of individual recombination events at the haploid, chromosomal μ-δ locus in a murine hybridoma cell line. The results showed that (i) heteroduplex DNA (hDNA) is formed during mammalian gene replacement; (ii) mismatches in hDNA are usually efficiently repaired before DNA replication and cell division; (iii) the gene replacement reaction occurs with fidelity; (iv) the presence of multiple markers in one homologous flanking arm in the replacement vector did not affect the efficiency of gene replacement; and (v) in comparison to a genomic fragment bearing contiguous homology to the chromosomal target, gene targeting was only slightly inhibited by internal heterology (pSV2neo sequences) in the replacement vector.


1985 ◽  
Vol 5 (1) ◽  
pp. 59-69 ◽  
Author(s):  
K R Folger ◽  
K Thomas ◽  
M R Capecchi

We have examined the mechanism of homologous recombination between plasmid molecules coinjected into cultured mammalian cells. Cell lines containing recombinant DNA molecules were obtained by selecting for the reconstruction of a functional Neor gene from two plasmids that bear different amber mutations in the Neor gene. In addition, these plasmids contain restriction-length polymorphisms within and near the Neor gene. These polymorphisms did not confer a selectable phenotype but were used to identify and categorize selected and nonselected recombinant DNA molecules. The striking conclusion from this analysis is that the predominant mechanism for the exchange of information between coinjected plasmid molecules over short distances (i.e., less than 1 kilobase) proceeds via nonreciprocal homologous recombination. The frequency of homologous recombination between coinjected plasmid molecules in cultured mammalian cells is extremely high, approaching unity. We demonstrate that this high frequency requires neither a high input of plasmid molecules per cell nor a localized high concentration of plasmid DNA within the nucleus. Thus, it appears that plasmid molecules, once introduced into the nucleus, have no difficulty seeking each other out and participating in homologous recombination even in the presence of a vast excess of host DNA sequences. Finally, we show that most of the homologous recombination events occur within a 1-h interval after the introduction of plasmid DNA into the cell nucleus.


Since the publication of the first edition of Gene Targeting: A Practical Approach in 1993 there have been many advances in gene targeting and this new edition has been thoroughly updated and rewritten to include all the major new techniques. It provides not only tried-and-tested practical protocols but detailed guidance on their use and applications. As with the previous edition Gene Targeting: A Practical Approach 2e concentrates on gene targeting in mouse ES cells, but the techniques described can be easily adapted to applications in tissue culture including those for human cells. The first chapter covers the design of gene targeting vectors for mammalian cells and describes how to distinguish random integrations from homologous recombination. It is followed by a chapter on extending conventional gene targeting manipulations by using site-specific recombination using the Cre-loxP and Flp-FRT systems to produce 'clean' germline mutations and conditionally (in)activating genes. Chapter 3 describes methods for introducing DNA into ES cells for homologous recombination, selection and screening procedures for identifying and recovering targeted cell clones, and a simple method for establishing new ES cell lines. Chapter 4 discusses the pros and cons or aggregation versus blastocyst injection to create chimeras, focusing on the technical aspects of generating aggregation chimeras and then describes some of the uses of chimeras. The next topic covered is gene trap strategies; the structure, components, design, and modification of GT vectors, the various types of GT screens, and the molecular analysis of GT integrations. The final chapter explains the use of classical genetics in gene targeting and phenotype interpretation to create mutations and elucidate gene functions. Gene Targeting: A Practical Approach 2e will therefore be of great value to all researchers studying gene function.


1988 ◽  
Vol 8 (10) ◽  
pp. 4185-4189 ◽  
Author(s):  
J A Greenspan ◽  
F M Xu ◽  
R L Davidson

The molecular mechanisms of ethyl methanesulfonate-induced reversion in mammalian cells were studied by using as a target a gpt gene that was integrated chromosomally as part of a shuttle vector. Murine cells containing mutant gpt genes with single base changes were mutagenized with ethyl methanesulfonate, and revertant colonies were isolated. Ethyl methanesulfonate failed to increase the frequency of revertants for cell lines with mutant gpt genes carrying GC----AT transitions or AT----TA transversions, whereas it increased the frequency 50-fold to greater than 800-fold for cell lines with mutant gpt genes carrying AT----GC transitions and for one cell line with a GC----CG transversion. The gpt genes of 15 independent revertants derived from the ethyl methanesulfonate-revertible cell lines were recovered and sequenced. All revertants derived from cell lines with AT----GC transitions had mutated back to the wild-type gpt sequence via GC----AT transitions at their original sites of mutation. Five of six revertants derived from the cell line carrying a gpt gene with a GC----CG transversion had mutated via GC----AT transition at the site of the original mutation or at the adjacent base in the same triplet; these changes generated non-wild-type DNA sequences that code for non-wild-type amino acids that are apparently compatible with xanthine-guanine phosphoribosyltransferase activity. The sixth revertant had mutated via CG----GC transversion back to the wild-type sequence. The results of this study define certain amino acid substitutions in the xanthine-guanine phosphoribosyltransferase polypeptide that are compatible with enzyme activity. These results also establish mutagen-induced reversion analysis as a sensitive and specific assay for mutagenesis in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document