scholarly journals Differential expression of oocyte-type class III genes with fraction TFIIIC from immature or mature oocytes.

1992 ◽  
Vol 12 (3) ◽  
pp. 946-953 ◽  
Author(s):  
W F Reynolds ◽  
D L Johnson

The Xenopus OAX genes can be expressed in oocytes but are virtually inactive in somatic tissues. The tRNA(Met1) (tMET) genes also appear to be developmentally regulated. We have examined the reason for the differential expression of these class III genes. Analysis of the transcriptional activities of extracts derived from immature and mature oocytes revealed that the developmental regulation of these genes can be reproduced in vitro. We have partially purified the required transcription factors B and C from these extracts to ascertain the components responsible for this differential activity. The immature oocyte C fraction activates the tMET and OAX genes when reconstituted with either the immature or mature oocyte-derived B fraction. In contrast, the mature oocyte C fraction fails to activate these genes regardless of which B fraction is used. Both C fractions activated the somatic 5S gene. Purification of the oocyte C fractions by phosphocellulose or B box DNA affinity chromatography failed to separate additional activities responsible for the differential expression of OAX or tMET. By using template exclusion assays, the inability of the mature oocyte C fraction to activate transcription was correlated with an inability to form stable transcription complexes with the tMET or OAX gene.

1992 ◽  
Vol 12 (3) ◽  
pp. 946-953
Author(s):  
W F Reynolds ◽  
D L Johnson

The Xenopus OAX genes can be expressed in oocytes but are virtually inactive in somatic tissues. The tRNA(Met1) (tMET) genes also appear to be developmentally regulated. We have examined the reason for the differential expression of these class III genes. Analysis of the transcriptional activities of extracts derived from immature and mature oocytes revealed that the developmental regulation of these genes can be reproduced in vitro. We have partially purified the required transcription factors B and C from these extracts to ascertain the components responsible for this differential activity. The immature oocyte C fraction activates the tMET and OAX genes when reconstituted with either the immature or mature oocyte-derived B fraction. In contrast, the mature oocyte C fraction fails to activate these genes regardless of which B fraction is used. Both C fractions activated the somatic 5S gene. Purification of the oocyte C fractions by phosphocellulose or B box DNA affinity chromatography failed to separate additional activities responsible for the differential expression of OAX or tMET. By using template exclusion assays, the inability of the mature oocyte C fraction to activate transcription was correlated with an inability to form stable transcription complexes with the tMET or OAX gene.


1987 ◽  
Vol 7 (8) ◽  
pp. 2838-2844
Author(s):  
M R Mowatt ◽  
C E Clayton

Trypanosoma brucei undergoes many morphological and biochemical changes during transformation from the bloodstream trypomastigote to the insect procyclic trypomastigote form. We cloned and determined the complete nucleotide sequence of a developmentally regulated cDNA. The corresponding mRNA was abundant in in vitro-cultivated procyclics but absent in bloodstream forms. The trypanosome genome contains eight genes homologous to this cDNA, arranged as four unlinked pairs of tandem repeats. The longest open reading frame of the cDNA predicts a protein of 15 kilodaltons, the central portion of which consists of 29 tandem glutamate-proline dipeptides. The repetitive region is preceded by an amino-terminal signal sequence and followed by a hydrophobic domain that could serve as a membrane anchor; the mRNA was found on membrane-bound polyribosomes. These results suggest that the protein is membrane associated.


1998 ◽  
Vol 180 (9) ◽  
pp. 2515-2521 ◽  
Author(s):  
Gabriella H. Kelemen ◽  
Paul Brian ◽  
Klas Flärdh ◽  
Leony Chamberlin ◽  
Keith F. Chater ◽  
...  

ABSTRACT whiE is a complex locus that specifies the polyketide spore pigment in Streptomyces coelicolor A3(2). Two divergently oriented promoters, whiEP1 andwhiEP2, were identified in the whiE gene cluster, and their activities were analyzed during colony development in wild-type and sporulation-deficient strains. Both promoters were developmentally regulated; whiEP1 and whiEP2transcripts were detected transiently at approximately the time when sporulation septa were observed in the aerial hyphae, and transcription from both promoters depended on each of the six known “early”whi genes required for sporulation septum formation (whiA, -B, -G, -H, -I, and -J). Mutation of the late sporulation-specific sigma factor gene, sigF, had no effect on the activity of whiEP1 but blocked transcription fromwhiEP2. However, ςF-containing holoenzyme was not sufficient to direct transcription of whiEP2 in vitro. The whiEP2 promoter controls expression of whiEORFVIII, encoding a putative flavin adenine dinucleotide-dependent hydroxylase that catalyzes a late tailoring step in the spore pigment biosynthetic pathway. Disruption of whiE ORFVIII causes a change in spore color, from grey to greenish (T.-W. Yu and D. A. Hopwood, Microbiology 141:2779–2791, 1995). Consistent with these observations, construction of a sigF null mutant ofS. coelicolor M145 caused the same change in spore color, showing that disruption of sigF in S. coelicolor changes the nature of the spore pigment rather than preventing its synthesis altogether.


2020 ◽  
Vol 48 (15) ◽  
pp. 8704-8723
Author(s):  
Joseph T Smith Jr. ◽  
Eva Doleželová ◽  
Brianna Tylec ◽  
Jonathan E Bard ◽  
Runpu Chen ◽  
...  

Abstract Trypanosoma brucei is a parasitic protozoan that undergoes a complex life cycle involving insect and mammalian hosts that present dramatically different nutritional environments. Mitochondrial metabolism and gene expression are highly regulated to accommodate these environmental changes, including regulation of mRNAs that require extensive uridine insertion/deletion (U-indel) editing for their maturation. Here, we use high throughput sequencing and a method for promoting life cycle changes in vitro to assess the mechanisms and timing of developmentally regulated edited mRNA expression. We show that edited CYb mRNA is downregulated in mammalian bloodstream forms (BSF) at the level of editing initiation and/or edited mRNA stability. In contrast, edited COIII mRNAs are depleted in BSF by inhibition of editing progression. We identify cell line-specific differences in the mechanisms abrogating COIII mRNA editing, including the possible utilization of terminator gRNAs that preclude the 3′ to 5′ progression of editing. By examining the developmental timing of altered mitochondrial mRNA levels, we also reveal transcript-specific developmental checkpoints in epimastigote (EMF), metacyclic (MCF), and BSF. These studies represent the first analysis of the mechanisms governing edited mRNA levels during T. brucei development and the first to interrogate U-indel editing in EMF and MCF life cycle stages.


1994 ◽  
Vol 14 (6) ◽  
pp. 3588-3595
Author(s):  
H M Dunstan ◽  
L S Young ◽  
K U Sprague

Promoter-specific transcription by silkworm RNA polymerase III is dependent on several transcription factors (TFs) in addition to the polymerase itself. The activities present in silk gland nuclear extracts that are necessary to reconstitute transcription from class III genes in vitro have been resolved into several partially purified components. These include TFIIIR, which is unusual because it is composed of RNA. Here, we identify the RNA that provides TFIIIR activity as silkworm tRNA(IleIAU). This conclusion is based on copurification of tRNA(IleIAU) with TFIIIR activity, TFIIIR activity in synthetic tRNA(Ile), and hybrid selection of TFIIIR activity by antisense tRNA(IleIAU). We have tested the ability of a variety of other tRNAs to stimulate transcription and find that TFIIIR activity is highly specific to silkworm tRNA(IleIAU).


2005 ◽  
Vol 187 (2) ◽  
pp. 800-804 ◽  
Author(s):  
Marcus Rauch ◽  
Qin Luo ◽  
Stefanie Müller-Altrock ◽  
Werner Goebel

ABSTRACT Recent studies have identified several new genes in Listeria monocytogenes which are positively or negatively affected by PrfA and grouped into three classes (E. Milohanic et al., Mol. Microbiol. 47:1613-1625, 2003). In vitro transcription performed with promoters of some class III genes showed strict SigB-dependent but PrfA-independent transcription initiation. Transcription starting at the prfA promoter PprfA2 was also optimal with SigB-loaded RNA polymerase, suggesting a direct link between SigB- and PrfA-dependent gene expression.


1999 ◽  
Vol 19 (12) ◽  
pp. 8042-8051 ◽  
Author(s):  
Eric Deprez ◽  
Rosalía Arrebola ◽  
Christine Conesa ◽  
André Sentenac

ABSTRACT TFIIIC plays a key role in nucleating the assembly of the initiation factor TFIIIB on class III genes. We have characterized an essential gene, TFC8, encoding the 60-kDa polypeptide, τ60, present in affinity-purified TFIIIC. Hemagglutinin-tagged variants of τ60 were found to be part of TFIIIC-tDNA complexes and to reside at least in part in the downstream DNA-binding domain τB. Unexpectedly, the thermosensitive phenotype of N-terminally tagged τ60 was suppressed by overexpression of τ95, which belongs to the τA domain, and by two TFIIIB components, TATA-binding protein (TBP) and B"/TFIIIB90 (but not by TFIIIB70). Mutant TFIIIC was deficient in the activation of certain tRNA genes in vitro, and the transcription defect was selectively alleviated by increasing TBP concentration. Coimmunoprecipitation experiments support a direct interaction between TBP and τ60. It is suggested that τ60 links τA and τB domains and participates in TFIIIB assembly via its interaction with TBP.


1987 ◽  
Vol 7 (8) ◽  
pp. 2838-2844 ◽  
Author(s):  
M R Mowatt ◽  
C E Clayton

Trypanosoma brucei undergoes many morphological and biochemical changes during transformation from the bloodstream trypomastigote to the insect procyclic trypomastigote form. We cloned and determined the complete nucleotide sequence of a developmentally regulated cDNA. The corresponding mRNA was abundant in in vitro-cultivated procyclics but absent in bloodstream forms. The trypanosome genome contains eight genes homologous to this cDNA, arranged as four unlinked pairs of tandem repeats. The longest open reading frame of the cDNA predicts a protein of 15 kilodaltons, the central portion of which consists of 29 tandem glutamate-proline dipeptides. The repetitive region is preceded by an amino-terminal signal sequence and followed by a hydrophobic domain that could serve as a membrane anchor; the mRNA was found on membrane-bound polyribosomes. These results suggest that the protein is membrane associated.


1994 ◽  
Vol 14 (6) ◽  
pp. 3588-3595 ◽  
Author(s):  
H M Dunstan ◽  
L S Young ◽  
K U Sprague

Promoter-specific transcription by silkworm RNA polymerase III is dependent on several transcription factors (TFs) in addition to the polymerase itself. The activities present in silk gland nuclear extracts that are necessary to reconstitute transcription from class III genes in vitro have been resolved into several partially purified components. These include TFIIIR, which is unusual because it is composed of RNA. Here, we identify the RNA that provides TFIIIR activity as silkworm tRNA(IleIAU). This conclusion is based on copurification of tRNA(IleIAU) with TFIIIR activity, TFIIIR activity in synthetic tRNA(Ile), and hybrid selection of TFIIIR activity by antisense tRNA(IleIAU). We have tested the ability of a variety of other tRNAs to stimulate transcription and find that TFIIIR activity is highly specific to silkworm tRNA(IleIAU).


Sign in / Sign up

Export Citation Format

Share Document