scholarly journals Non-Mendelian inheritance of macronuclear mutations is gene specific in Paramecium tetraurelia.

1994 ◽  
Vol 14 (4) ◽  
pp. 2479-2484 ◽  
Author(s):  
J M Scott ◽  
K Mikami ◽  
C L Leeck ◽  
J D Forney

Paramecium tetraurelia contains two types of nuclei, a diploid germinal micronucleus and a large transcriptionally active macronucleus. The macronuclear genome is formed from the micronuclear DNA during sexual reproduction. Previous studies have shown that the processing of the A-type variable surface protein gene during formation of a new macronucleus is dependent on the presence of the A gene in the old macronucleus. It is not clear if this is a general feature that controls the formation of the Paramecium macronuclear genome or a unique feature of the A locus. Using micronuclear transplantation, we have constructed a strain that has a wild-type micronucleus but has macronuclear deletions of the A- and B-type surface protein genes. Neither the A nor the B gene is incorporated into the new macronucleus after sexual reproduction. Macronuclear transformation of this strain with the B gene rescues the B-gene deletion after formation of the next macronucleus but has not effect on the A deletion. Similarly, transformation with the A gene shows gene-specific rescue for A but not B. The effect of the old macronucleus on the processing of the new macronucleus results in a pattern of non-Mendelian inheritance of both macronuclear deletions. Progeny from the wild-type exconjugant are all wild type, and progeny from the A- B- exconjugant are mutant. The features of this A- B- non-Mendelian mutant demonstrate that the regulation of macronuclear DNA processing is gene specific, and our results open the possibility that this type of regulation affects many regions of the Paramecium genome.

1994 ◽  
Vol 14 (4) ◽  
pp. 2479-2484
Author(s):  
J M Scott ◽  
K Mikami ◽  
C L Leeck ◽  
J D Forney

Paramecium tetraurelia contains two types of nuclei, a diploid germinal micronucleus and a large transcriptionally active macronucleus. The macronuclear genome is formed from the micronuclear DNA during sexual reproduction. Previous studies have shown that the processing of the A-type variable surface protein gene during formation of a new macronucleus is dependent on the presence of the A gene in the old macronucleus. It is not clear if this is a general feature that controls the formation of the Paramecium macronuclear genome or a unique feature of the A locus. Using micronuclear transplantation, we have constructed a strain that has a wild-type micronucleus but has macronuclear deletions of the A- and B-type surface protein genes. Neither the A nor the B gene is incorporated into the new macronucleus after sexual reproduction. Macronuclear transformation of this strain with the B gene rescues the B-gene deletion after formation of the next macronucleus but has not effect on the A deletion. Similarly, transformation with the A gene shows gene-specific rescue for A but not B. The effect of the old macronucleus on the processing of the new macronucleus results in a pattern of non-Mendelian inheritance of both macronuclear deletions. Progeny from the wild-type exconjugant are all wild type, and progeny from the A- B- exconjugant are mutant. The features of this A- B- non-Mendelian mutant demonstrate that the regulation of macronuclear DNA processing is gene specific, and our results open the possibility that this type of regulation affects many regions of the Paramecium genome.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 189-198 ◽  
Author(s):  
J Scott ◽  
C Leeck ◽  
J Forney

Abstract The gene encoding the B type variable surface protein from Paramecium tetraurelia stock 51 has been cloned and sequenced. The 7,182 nucleotide open reading frame contains no introns and encodes a cysteine-rich protein that has a periodic structure including three nearly perfect tandem repeats in the central region. Interestingly, the B gene is located near a macronuclear telomere as was shown previously for two other paramecium surface protein genes. In this paper, we characterize four independent mutants with complete macronuclear deletions of the B gene. Previous analysis of different macronuclear deletion mutants of the A surface protein gene demonstrated two types of inheritance: typical Mendelian segregation (as illustrated by d12) and cytoplasmic inheritance (shown by d48). F1 analysis of four B- mutants crossed with wild-type cells reveals heterozygous F1 cell lines derived from both parental cytoplasms contain approximately the same copy number of the B gene, as expected for a recessive Mendelian mutation. Analysis of F2 progeny from three of these four B- mutant crosses indicates that one of the three exhibits a Mendelian 1:1 segregation ratio of B+ and B- cell lines. The other two show a preponderance of B+ cells, but this is not correlated with the parental cytoplasmic type. In addition to having a large number of B+ individuals, the d12.144, A-, B- mutant produced some F2 progeny that stably maintain less than normal macronuclear amounts of the A gene and/or the B gene.


2007 ◽  
Vol 189 (22) ◽  
pp. 8233-8240 ◽  
Author(s):  
Esther Heikens ◽  
Marc J. M. Bonten ◽  
Rob J. L. Willems

ABSTRACT Enterococci have emerged as important nosocomial pathogens with resistance to multiple antibiotics. Adhesion to abiotic materials and biofilm formation on medical devices are considered important virulence properties. A single clonal lineage of Enterococcus faecium, complex 17 (CC17), appears to be a successful nosocomial pathogen, and most CC17 isolates harbor the enterococcal surface protein gene, esp. In this study, we constructed an esp insertion-deletion mutant in a clinical E. faecium CC17 isolate. In addition, initial adherence and biofilm assays were performed. Compared to the wild-type strain, the esp insertion-deletion mutant no longer produced Esp on the cell surface and had significantly lower initial adherence to polystyrene and significantly less biofilm formation, resulting in levels of biofilm comparable to those of an esp-negative isolate. Capacities for initial adherence and biofilm formation were restored in the insertion-deletion mutant by in trans complementation with esp. These results identify Esp as the first documented determinant in E. faecium CC17 with an important role in biofilm formation, which is an essential factor in infection pathogenesis.


Genetics ◽  
1994 ◽  
Vol 136 (4) ◽  
pp. 1319-1324
Author(s):  
Y You ◽  
J Scott ◽  
J Forney

Abstract The paramecium tetraurelia mutant called d48 has a complete copy of the A surface protein gene in its micronuclei, but lacks the A gene in the macronucleus. Previous experiments have shown that microinjection of a plasmid containing the entire A gene or a large portion of the gene into the macronucleus of d48 rescued the cell line after formation of a new macronucleus (autogamy). Here we show that several different regions of the A gene can rescue d48, but 100% of the activity cannot be localized to a single, defined region. Inversion of a sequence contained within an A gene plasmid had no measurable effect on rescue efficiency and co-injection of two different plasmids results in enhancement of rescue activity despite the non-contiguous form of the DNA sequences. Both these results suggest that no specific product (RNA or protein) with defined end points is made from the rescuing fragment. A unique restriction site was created in the A gene and used to demonstrate that the injected DNA does not serve as a direct template for the synthesis of the new macronuclear DNA. Models to explain the action of the injected DNA are discussed.


Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Kimberly M Mayer ◽  
Kazuyuki Mikami ◽  
James D Forney

Abstract The excision of internal eliminated sequences (IESs) from the germline micronuclear DNA occurs during the differentiation of a new macronuclear genome in ciliated protozoa. In Paramecium, IESs are generally short (28–882 bp), AT rich DNA elements that show few conserved sequence features with the exception of an inverted-terminal-repeat consensus sequence that has similarity to the ends of mariner/Tc1 transposons (Klobutcher and Herrick 1995). We have isolated and analyzed a mutant cell line that cannot excise a 370-bp IESs (IES2591) from the coding region of the 51A variable surface protein gene. A single micronuclear C to T transition within the consensus sequence prevents excision. The inability to excise IES2591 has revealed a 28-bp IES inside the larger IES, suggesting that reiterative integration of these elements can occur. Together, the consensus sequence mutation and the evidence for reiterative integration support the theory that Paramecium IESs evolved from transposable elements. Unlike a previously studied Paramecium IES, the presence of this IES in the macronucleus does not completely inhibit excision of its wild-type micronuclear copy through multiple sexual generations.


2014 ◽  
Vol 104 (2) ◽  
pp. 195-202 ◽  
Author(s):  
A. Bordbar ◽  
S. Soleimani ◽  
F. Fardid ◽  
M.R. Zolfaghari ◽  
P. Parvizi

AbstractIndividual wild-caught sandflies from Iran were examined for infections of Wolbachia pipientis by targeting the major surface protein gene wsp of this intracellular α-proteobacterium. In total, 638 male and female sandflies were screened, of which 241 were found to be positive for one of three wsp haplotypes. Regardless of geographical origins and habitats, Phlebotomus (Phlebotomus) papatasi and other sandfly species were found to be infected with one common, widespread strain of A-group W. pipientis (Turk 54, GenBank accession EU780683; AY288297). In addition, a new A-group haplotype (Turk07, GenBank accession KC576916) was isolated from Phlebotomus (Paraphlebotomus) mongolensis and Phlebotomus (Pa.) caucasicus, and a new B-group haplotype (AZ2331, GenBank accession JX488735) was isolated from Phlebotomus (Larroussius) perfiliewi. Therefore, Wolbachia was found to occur in at least three of the incriminated vectors of zoonotic cutaneous leishmaniasis and zoonotic visceral leishmaniasis in different geographical regions of Iran. It may provide a new tool for the future control of leishmaniasis.


1988 ◽  
Vol 8 (11) ◽  
pp. 5043-5046
Author(s):  
J P Kile ◽  
H D Love ◽  
C A Hubach ◽  
G A Bannon

The expression of Tetrahymena surface proteins serotype H3 (SerH3) and serotype T (SerT) is under environmental regulation. SerH3 is expressed when cells are incubated between the temperatures of 20 and 35 degrees C, while SerT is expressed when cells are grown at temperatures above 35 degrees C. Using a SerH3 cDNA clone as a hybridization probe, we determined that (i) the SerH3 gene is a member of a multigene family; (ii) most members of this multigene family are variably rearranged during macronuclear development; and (iii) the gene which produces the SerH3 mRNA is reproducibly rearranged during macronuclear development.


Sign in / Sign up

Export Citation Format

Share Document