scholarly journals The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins.

1995 ◽  
Vol 15 (6) ◽  
pp. 3382-3389 ◽  
Author(s):  
A Hönlinger ◽  
M Kübrich ◽  
M Moczko ◽  
F Gärtner ◽  
L Mallet ◽  
...  

A multisubunit complex in the mitochondrial outer membrane is responsible for targeting and membrane translocation of nuclear-encoded preproteins. This receptor complex contains two import receptors, a general insertion pore and the protein Mom22. It was unknown if Mom22 directly interacts with preproteins, and two views existed about the possible functions of Mom22: a central role in transfer of preproteins from both receptors to the general insertion pore or a more limited function dependent on the presence of the receptor Mom19. For this report, we identified and cloned Saccharomyces cerevisiae MOM22 and investigated whether it plays a direct role in targeting of preproteins. A preprotein accumulated at the mitochondrial outer membrane was cross-linked to Mom22. The cross-linking depended on the import stage of the preprotein. Overexpression of Mom22 suppressed the respiratory defect of yeast cells lacking Mom19 and increased preprotein import into mom19 delta mitochondria, demonstrating that Mom22 can function independently of Mom19. Overexpression of Mom22 even suppressed the lethal phenotype of a double deletion of the two import receptors known so far (mom19 delta mom72 delta). Deletion of the MOM22 gene was lethal for yeast cells, identifying Mom22 as one of the few mitochondrial membrane proteins essential for fermentative growth. These results suggest that Mom22 plays an essential role in the mitochondrial receptor complex. It directly interacts with preproteins in transit and can perform receptor-like activities.

1995 ◽  
Vol 15 (11) ◽  
pp. 6196-6205 ◽  
Author(s):  
A Alconada ◽  
M Kübrich ◽  
M Moczko ◽  
A Hönlinger ◽  
N Pfanner

The mitochondrial outer membrane contains import receptors for preproteins and a multisubunit general insertion pore. Several small outer membrane proteins (< 10 kDa) have been identified by their association with receptors or the general insertion pore, yet little is known about their function. Here, we present evidence that the biochemically identified Mom8b and the genetically identified Isp6 are identical. A deletion of Mom8b/Isp6 in Saccharomyces cerevisiae leads to (i) a delay of import of preproteins, (ii) stabilization of preprotein binding to receptors and the general insertion pore, and (iii) destabilization of the interaction between receptors and the general insertion pore. These results suggest that Mom8b supports the cooperativity between receptors and the general insertion pore and facilitates the release of preproteins from import components and thereby promotes efficient transfer of preproteins.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Fenna Hensen ◽  
Amandine Moretton ◽  
Selma van Esveld ◽  
Géraldine Farge ◽  
Johannes N. Spelbrink

2006 ◽  
Vol 173 (5) ◽  
pp. 645-650 ◽  
Author(s):  
Mafalda Escobar-Henriques ◽  
Benedikt Westermann ◽  
Thomas Langer

Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion requires a tight control of Fzo1 levels, which is ensured by Fzo1 turnover. Mdm30 binds to Fzo1 and, dependent on its F-box, mediates proteolysis of Fzo1. Unexpectedly, degradation occurs along a novel proteolytic pathway not involving ubiquitylation, Skp1–Cdc53–F-box (SCF) E3 ubiquitin ligase complexes, or 26S proteasomes, indicating a novel function of an F-box protein. This contrasts to the ubiquitin- and proteasome-dependent turnover of Fzo1 in α-factor–arrested yeast cells. Our results therefore reveal not only a critical role of Fzo1 degradation for mitochondrial fusion in vegetatively growing cells but also the existence of two distinct proteolytic pathways for the turnover of mitochondrial outer membrane proteins.


2000 ◽  
Vol 151 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Edith D. Wong ◽  
Jennifer A. Wagner ◽  
Steven W. Gorsich ◽  
J. Michael McCaffery ◽  
Janet M. Shaw ◽  
...  

Mutations in the dynamin-related GTPase, Mgm1p, have been shown to cause mitochondrial aggregation and mitochondrial DNA loss in Saccharomyces cerevisiae cells, but Mgm1p's exact role in mitochondrial maintenance is unclear. To study the primary function of MGM1, we characterized new temperature sensitive MGM1 alleles. Examination of mitochondrial morphology in mgm1 cells indicates that fragmentation of mitochondrial reticuli is the primary phenotype associated with loss of MGM1 function, with secondary aggregation of mitochondrial fragments. This mgm1 phenotype is identical to that observed in cells with a conditional mutation in FZO1, which encodes a transmembrane GTPase required for mitochondrial fusion, raising the possibility that Mgm1p is also required for fusion. Consistent with this idea, mitochondrial fusion is blocked in mgm1 cells during mating, and deletion of DNM1, which encodes a dynamin-related GTPase required for mitochondrial fission, blocks mitochondrial fragmentation in mgm1 cells. However, in contrast to fzo1 cells, deletion of DNM1 in mgm1 cells restores mitochondrial fusion during mating. This last observation indicates that despite the phenotypic similarities observed between mgm1 and fzo1 cells, MGM1 does not play a direct role in mitochondrial fusion. Although Mgm1p was recently reported to localize to the mitochondrial outer membrane, our studies indicate that Mgm1p is localized to the mitochondrial intermembrane space. Based on our localization data and Mgm1p's structural homology to dynamin, we postulate that it functions in inner membrane remodeling events. In this context, the observed mgm1 phenotypes suggest that inner and outer membrane fission is coupled and that loss of MGM1 function may stimulate Dnm1p-dependent outer membrane fission, resulting in the formation of mitochondrial fragments that are structurally incompetent for fusion.


2001 ◽  
Vol 21 (7) ◽  
pp. 2337-2348 ◽  
Author(s):  
Chris Meisinger ◽  
Michael T. Ryan ◽  
Kerstin Hill ◽  
Kirstin Model ◽  
Joo Hyun Lim ◽  
...  

ABSTRACT The preprotein translocase of the yeast mitochondrial outer membrane (TOM) consists of the initial import receptors Tom70 and Tom20 and a ∼400-kDa (400 K) general import pore (GIP) complex that includes the central receptor Tom22, the channel Tom40, and the three small Tom proteins Tom7, Tom6, and Tom5. We report that the GIP complex is a highly stable complex with an unusual resistance to urea and alkaline pH. Under mild conditions for mitochondrial lysis, the receptor Tom20, but not Tom70, is quantitatively associated with the GIP complex, forming a 500K to 600K TOM complex. A preprotein, stably arrested in the GIP complex, is released by urea but not high salt, indicating that ionic interactions are not essential for keeping the preprotein in the GIP complex. Under more stringent detergent conditions, however, Tom20 and all three small Tom proteins are released, while the preprotein remains in the GIP complex. Moreover, purified outer membrane vesicles devoid of translocase components of the intermembrane space and inner membrane efficiently accumulate the preprotein in the GIP complex. Together, Tom40 and Tom22 thus represent the functional core unit that stably holds accumulated preproteins. The GIP complex isolated from outer membranes exhibits characteristic TOM channel activity with two coupled conductance states, each corresponding to the activity of purified Tom40, suggesting that the complex contains two simultaneously active and coupled channel pores.


2002 ◽  
Vol 76 (20) ◽  
pp. 10485-10496 ◽  
Author(s):  
Frédérique Weber-Lotfi ◽  
André Dietrich ◽  
Marcello Russo ◽  
Luisa Rubino

ABSTRACT Replication of the Carnation Italian ringspot virus genomic RNA in plant cells occurs in multivesicular bodies which develop from the mitochondrial outer membrane during infection. ORF1 in the viral genome encodes a 36-kDa protein, while ORF2 codes for the 95-kDa replicase by readthrough of the ORF1 stop codon. We have shown previously that the N-terminal part of ORF1 contains the information leading to vesiculation of mitochondria and that the 36-kDa protein localizes to mitochondria. Using infection, in vivo expression of green fluorescent protein fusions in plant and yeast cells, and in vitro mitochondrial integration assays, we demonstrate here that both the 36-kDa protein and the complete replicase are targeted to mitochondria and anchor to the outer membrane with the N terminus and C terminus on the cytosolic side. Analysis of deletion mutants indicated that the anchor sequence is likely to correspond approximately to amino acids 84 to 196, containing two transmembrane domains. No evidence for a matrix-targeting presequence was found, and the data suggest that membrane insertion of the viral proteins is mediated by an import receptor-independent signal-anchor mechanism relying on the two transmembrane segments and multiple recognition signals present in the N-terminal part of ORF1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anasuya Moitra ◽  
Doron Rapaport

Voltage dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane. It is a membrane embedded β-barrel protein composed of 19 mostly anti-parallel β-strands that form a hydrophilic pore. Similar to the vast majority of mitochondrial proteins, VDAC is encoded by nuclear DNA, and synthesized on cytosolic ribosomes. The protein is then targeted to the mitochondria while being maintained in an import competent conformation by specific cytosolic factors. Recent studies, using yeast cells as a model system, have unearthed the long searched for mitochondrial targeting signal for VDAC and the role of cytosolic chaperones and mitochondrial import machineries in its proper biogenesis. In this review, we summarize our current knowledge regarding the early cytosolic stages of the biogenesis of VDAC molecules, the specific targeting of VDAC to the mitochondrial surface, and the subsequent integration of VDAC into the mitochondrial outer membrane by the TOM and TOB/SAM complexes.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Daniela G Vitali ◽  
Sandro Käser ◽  
Antonia Kolb ◽  
Kai S Dimmer ◽  
Andre Schneider ◽  
...  

Assembly and/or insertion of a subset of mitochondrial outer membrane (MOM) proteins, including subunits of the main MOM translocase, require the fungi-specific Mim1/Mim2 complex. So far it was unclear which proteins accomplish this task in other eukaryotes. Here, we show by reciprocal complementation that the MOM protein pATOM36 of trypanosomes is a functional analogue of yeast Mim1/Mim2 complex, even though these proteins show neither sequence nor topological similarity. Expression of pATOM36 rescues almost all growth, mitochondrial biogenesis, and morphology defects in yeast cells lacking Mim1 and/or Mim2. Conversely, co-expression of Mim1 and Mim2 restores the assembly and/or insertion defects of MOM proteins in trypanosomes ablated for pATOM36. Mim1/Mim2 and pATOM36 form native-like complexes when heterologously expressed, indicating that additional proteins are not part of these structures. Our findings indicate that Mim1/Mim2 and pATOM36 are the products of convergent evolution and arose only after the ancestors of fungi and trypanosomatids diverged.


2007 ◽  
Vol 179 (7) ◽  
pp. 1355-1363 ◽  
Author(s):  
Hidenori Otera ◽  
Yohsuke Taira ◽  
Chika Horie ◽  
Yurina Suzuki ◽  
Hiroyuki Suzuki ◽  
...  

The central channel Tom40 of the preprotein translocase of outer membrane (TOM) complex is thought to be responsible for the import of virtually all preproteins synthesized outside the mitochondria. In this study, we analyze the topogenesis of the peripheral benzodiazepine receptor (PBR), which integrates into the mitochondrial outer membrane (MOM) through five hydrophobic transmembrane segments (TMSs) and functions in cholesterol import into the inner membrane. Analyses of in vitro and in vivo import into TOM component–depleted mitochondria reveal that PBR import (1) depends on the import receptor Tom70 but requires neither the Tom20 and Tom22 import receptors nor the import channel Tom40, (2) shares the post-Tom70 pathway with the C-tail–anchored proteins, and (3) requires factors of the mitochondrial intermembrane space. Furthermore, membrane integration of mitofusins and mitochondrial ubiquitin ligase, the MOM proteins with two and four TMSs, respectively, proceeds through the same initial pathway. These findings reveal a previously unidentified pathway of the membrane integration of MOM proteins with multiple TMSs.


Sign in / Sign up

Export Citation Format

Share Document