scholarly journals Expression of E1A in terminally differentiated muscle cells reactivates the cell cycle and suppresses tissue-specific genes by separable mechanisms.

1996 ◽  
Vol 16 (10) ◽  
pp. 5302-5312 ◽  
Author(s):  
M Tiainen ◽  
D Spitkovsky ◽  
P Jansen-Dürr ◽  
A Sacchi ◽  
M Crescenzi

Terminally differentiated cells are characterized by permanent withdrawal from the cell cycle; they do not enter S phase even when stimulated by growth factors or retroviral oncogenes. We have shown, however, that the adenovirus E1A oncogene can reactivate the cell cycle in terminally differentiated cells. In this report, we describe the molecular events triggered by E1A in terminally differentiated skeletal muscle cells. We found that in myotubes infected with the adenovirus mutant dl520, 12S E1A bypasses the early G1 phase and activates the expression of late-G1 genes, such as the cyclin E and cyclin A genes, cdk2, PCNA, and B-myb. Of these, the cyclin E gene and cdk2 were significantly overexpressed in comparison with levels in proliferating, undifferentiated myoblasts. p130 and pRb were phosphorylated before the infected myotubes entered S phase, despite the high expression of the cyclin-dependent kinase inhibitor p21, and E2F was released. Our results suggest that one of the mechanisms that E1A uses to overcome the proliferative block of terminally differentiated cells involves coordinated overexpression of cyclin E and cdk2. Following E1A expression, the myogenic transcription factors MyoD and myogenin and the muscle-specific structural genes encoding muscle creatine kinase and myosin heavy chain were downregulated. The muscle regulatory factors were also silenced in myotubes infected with adenovirus E1A mutants incapable of reactivating the cell cycle in terminally differentiated muscle cells. Thus, the suppression of the differentiation program is not a consequence of cell cycle reactivation in myotubes, and it is induced by an independent mechanism. Our results show that E1A reactivates the cell cycle and suppresses tissue-specific gene expression in terminally differentiated muscle cells, thus causing dedifferentiation.

Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 770-777 ◽  
Author(s):  
Martin Erlanson ◽  
Cajsa Portin ◽  
Barbro Linderholm ◽  
Jack Lindh ◽  
Göran Roos ◽  
...  

Abstract Cyclin E and the cyclin-dependent kinase inhibitor p27 are two important regulators of the G1-S transition modulating the activity of cyclin-dependent kinases. Aberrations in the cell cycle control are often observed in tumors and might even be mandatory in tumor development. To investigate the importance of cell-cycle defects in malignant lymphomas we have characterized the expression of cyclin E and p27 in 105 newly diagnosed lymphomas using immunohistochemistry. A significant, inverse correlation between p27 and cyclin E expression was observed (rs = −.24, P = .02) and both proteins correlated with the S-phase fraction (rs = −.35, P < .001 andrs = .45, P < .001, respectively). The inverse relationship between p27 expression and proliferation was abrogated in some lymphomas, suggesting that p27 downregulation can represent a genuine aberration. Survival analysis was performed in 105 patients with a median observation time of 86 months. Low p27 and high cyclin E expression were significantly associated with a poor prognosis (P = .0001 and .03, respectively). In a multivariate Cox analysis, p27 expression, stage, serum lactate dehydrogenase level, grade, and age were independent prognostic factors, in contrast to S-phase fraction and cyclin E expression. This is the first report showing that p27 expression in malignant lymphomas has independent prognostic significance, which necessitates future studies regarding its more precise biological role in lymphoid tumorogenesis. © 1998 by The American Society of Hematology.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 846-854 ◽  
Author(s):  
Yuehua Jiang ◽  
Felipe Prosper ◽  
Catherine M. Verfaillie

We evaluated the effect of β1-integrin receptor engagement on the expression and activity of cell cycle regulatory proteins in CD34+ cells under conditions that mimic the steady-state marrow microenvironment and in the presence of supraphysiological concentrations of interleukin-3 (IL3) and stem cell factor (SCF). Adhesion of CD34+ progenitors to fibronectin (FN) was similar whether IL3 or SCF was present or absent. Engagement of β1-integrins blocked S-phase entry of CD34+ cells in the absence of IL3 or SCF, whereas addition of 10 ng/mL IL3 or SCF prevented such a block in S-phase entry. In the absence of IL3 or SCF, cyclin-E levels were significantly lower and p27KIP1 levels significantly higher in FN-adherent than in FN-nonadherent cells, or than in poly-L-lysine (PLL)–adherent or (PLL)–nonadherent cells. Cyclin-dependent-kinase (cdk)-2 activity was decreased and levels of cyclin-E–cdk2 complexes were lower in FN-adherent than in PLL-adherent cells. In contrast, cyclin-E and p27KIP1 protein levels and cdk2 activity in cells adherent to FN in the presence of IL3 or SCF were similar to those in PLL-adherent and FN-nonadherent or PLL-nonadherent cells. In conclusion, under physiological cytokine conditions, integrin engagement prevents S-phase entrance of CD34+ cells, which is associated with elevated levels of the contact-dependent cyclin kinase inhibitor p27KIP1. Supraphysiological concentrations of IL3 or SCF prevent p27KIP1 elevation and override the integrin-mediated inhibition of entry into S phase.


1996 ◽  
Vol 16 (4) ◽  
pp. 1335-1341 ◽  
Author(s):  
W Poluha ◽  
D K Poluha ◽  
B Chang ◽  
N E Crosbie ◽  
C M Schonhoff ◽  
...  

We are employing recent advances in the understanding of the cell cycle to study the inverse relationship between proliferation and neuronal differentiation. Nerve growth factor and aphidicolin, an inhibitor of DNA polymerases, synergistically induce neuronal differentiation of SH-SY5Y neuroblastoma cells and the expression of p21WAF1, an inhibitor of cyclin-dependent kinases. The differentiated cells continue to express p21WAF1, even after removal of aphidicolin from the culture medium. The p21WAF1 protein coimmunoprecipitates with cyclin E and inhibits cyclin E-associated protein kinase activity. Each of three antisense oligonucleotides complementary to p21WAF1 mRNA partially blocks expression of p21WAF1 and promotes programmed cell death. These data indicate that p21WAF1 expression is required for survival of these differentiating neuroblastoma cells. Thus, the problem of neuronal differentiation can now be understood in the context of negative regulators of the cell cycle.


Development ◽  
2000 ◽  
Vol 127 (21) ◽  
pp. 4619-4630 ◽  
Author(s):  
L. Jones ◽  
H. Richardson ◽  
R. Saint

Cyclin E is an essential regulator of S phase entry. We have previously shown that transcriptional regulation of the gene that encodes Drosophila cyclin E, DmcycE, plays an important role in the control of the G(1) to S phase transition during development. We report here the first comprehensive analysis of the transcriptional regulation of a G(1)phase cell cycle regulatory gene during embryogenesis. Analysis of deficiencies, a genomic transformant and reporter gene constructs revealed that DmcycE transcription is controlled by a large and complex cis-regulatory region containing tissue- and stage-specific components. Separate regulatory elements for transcription in epidermal cells during cell cycles 14–16, central nervous system cells and peripheral nervous system cells were found. An additional cis-regulatory element drives transcription in thoracic epidermal cells that undergo a 17th cell cycle when other epidermal cells have arrested in G(1)phase prior to terminal differentiation. The complexity of DmcycE transcriptional regulation argues against a model in which DmcycE transcription is regulated simply and solely by G(1) to S phase transcription regulators such as RB, E2F and DP. Rather, our study demonstrates that tissue-specific transcriptional regulatory mechanisms are important components of the control of cyclin E transcription and thus of cell proliferation in metazoans.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 770-777 ◽  
Author(s):  
Martin Erlanson ◽  
Cajsa Portin ◽  
Barbro Linderholm ◽  
Jack Lindh ◽  
Göran Roos ◽  
...  

Cyclin E and the cyclin-dependent kinase inhibitor p27 are two important regulators of the G1-S transition modulating the activity of cyclin-dependent kinases. Aberrations in the cell cycle control are often observed in tumors and might even be mandatory in tumor development. To investigate the importance of cell-cycle defects in malignant lymphomas we have characterized the expression of cyclin E and p27 in 105 newly diagnosed lymphomas using immunohistochemistry. A significant, inverse correlation between p27 and cyclin E expression was observed (rs = −.24, P = .02) and both proteins correlated with the S-phase fraction (rs = −.35, P < .001 andrs = .45, P < .001, respectively). The inverse relationship between p27 expression and proliferation was abrogated in some lymphomas, suggesting that p27 downregulation can represent a genuine aberration. Survival analysis was performed in 105 patients with a median observation time of 86 months. Low p27 and high cyclin E expression were significantly associated with a poor prognosis (P = .0001 and .03, respectively). In a multivariate Cox analysis, p27 expression, stage, serum lactate dehydrogenase level, grade, and age were independent prognostic factors, in contrast to S-phase fraction and cyclin E expression. This is the first report showing that p27 expression in malignant lymphomas has independent prognostic significance, which necessitates future studies regarding its more precise biological role in lymphoid tumorogenesis. © 1998 by The American Society of Hematology.


1991 ◽  
Vol 260 (3) ◽  
pp. C581-C588 ◽  
Author(s):  
A. Bobik ◽  
A. Grooms ◽  
P. J. Little ◽  
E. J. Cragoe ◽  
S. Grinpukel

The reported effects of alterations in Na-H exchange activity on mitogenesis are variable and appear dependent on the cell type examined. We examined the effects of reductions in ethylisopropylamiloride (EIPA)-sensitive pH-regulating mechanisms including Na-H exchange and alterations in intracellular pH (pHi) on the growth characteristics of rat aortic smooth muscle cells (RASM) cultured in serum-containing bicarbonate-buffered medium. Exposure of RASM replicating in bicarbonate-containing medium to the Na-H exchange inhibitors EIPA, dimethylamiloride (DMA), or amiloride (A) attenuated their replication rate. The order of potency of the inhibitors (EIPA greater than DMA much greater than A) was similar to their documented effects on Na-H exchange activity and to their order of potency for inhibiting recovery from CO2-induced acidosis in these cells. Reductions in pHi induced by lowering extracellular pH also attenuated the incorporation of [3H]-thymidine into DNA, while increases in pHi were associated with an acceleration in the rate of incorporation of [3H]thymidine into DNA. The effects of the Na-H exchange inhibitors on RASM replication were due to a reduction in the ability of the smooth muscle cells to enter the S phase of the mitotic cell cycle. This appeared predominantly the consequence of effects late within the G1 phase of the cell cycle. Concentrations of EIPA that markedly reduced the ability of RASM to enter S phase and to replicate also attenuated the increase in protein synthesis occurring 6-8 h after exposure to serum.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 13 (9) ◽  
pp. 5829-5842
Author(s):  
P Zheng ◽  
D S Fay ◽  
J Burton ◽  
H Xiao ◽  
J L Pinkham ◽  
...  

SPK1 was originally discovered in an immunoscreen for tyrosine-protein kinases in Saccharomyces cerevisiae. We have used biochemical and genetic techniques to investigate the function of this gene and its encoded protein. Hybridization of an SPK1 probe to an ordered genomic library showed that SPK1 is adjacent to PEP4 (chromosome XVI L). Sporulation of spk1/+ heterozygotes gave rise to spk1 spores that grew into microcolonies but could not be further propagated. These colonies were greatly enriched for budded cells, especially those with large buds. Similarly, eviction of CEN plasmids bearing SPK1 from cells with a chromosomal SPK1 disruption yielded viable cells with only low frequency. Spk1 protein was identified by immunoprecipitation and immunoblotting. It was associated with protein-Ser, Thr, and Tyr kinase activity in immune complex kinase assays. Spk1 was localized to the nucleus by immunofluorescence. The nucleotide sequence of the SPK1 5' noncoding region revealed that SPK1 contains two MluI cell cycle box elements. These elements confer S-phase-specific transcription to many genes involved in DNA synthesis. Northern (RNA) blotting of synchronized cells verified that the SPK1 transcript is coregulated with other MluI box-regulated genes. The SPK1 upstream region also includes a domain highly homologous to sequences involved in induction of RAD2 and other excision repair genes by agents that induce DNA damage. spk1 strains were hypersensitive to UV irradiation. Taken together, these findings indicate that SPK1 is a dual-specificity (Ser/Thr and Tyr) protein kinase that is essential for viability. The cell cycle-dependent transcription, presence of DNA damage-related sequences, requirement for UV resistance, and nuclear localization of Spk1 all link this gene to a crucial S-phase-specific role, probably as a positive regulator of DNA synthesis.


1993 ◽  
Vol 13 (10) ◽  
pp. 6537-6546 ◽  
Author(s):  
M Arroyo ◽  
S Bagchi ◽  
P Raychaudhuri

The transcription factor E2F has been shown to be involved in the expression of several cell cycle-regulated genes, and the activity of this factor is controlled by cellular proteins such as pRB and p107. E2F is also a target of the DNA virus oncoproteins (adenovirus E1A, simian virus 40 T antigen, and human papillomavirus [HPV] E7) (see the review by J. R. Nevins [Science 258: 424-429, 1992]). These viral oncoproteins dissociate an inactive complex between E2F and the retinoblastoma tumor suppressor protein (pRB), and this dissociation of the E2F-pRB complex correlates with a stimulation of the E2F-dependent transcription. In the S phase of the cell cycle, E2F forms a complex with p107, cyclin A, and the cdk2 kinase (E2F-cyclin A complex). The cellular function of this S-phase-specific complex is unclear. The adenovirus E1A protein dissociates the E2F-cyclin A complex. The HPV type 16 (HPV-16) E7 protein, which possesses significant sequence homology with E1A, does not dissociate the E2F-cyclin A complex. We find that the HPV-16 E7 protein associates very efficiently with the E2F-cyclin A complex. This association is dependent on the sequences that are also necessary for the transforming activity of E7. Moreover, the E7 protein of a low-risk HPV (type 6b) is much less efficient in binding to the E2F-cyclin A complex compared with that of the high-risk type. We also find that the E2F-cyclin A complex remains endogenously associated with the E7 protein in extracts of Caski cells, which express high levels of HPV-16 E7 protein. Finally, we have extensively purified the E2F-cyclin A complex from mouse L-cell extracts and show that, in cell extracts, the E2F-cyclin A complex remains associated with other cellular proteins.


2019 ◽  
Vol 116 (48) ◽  
pp. 23891-23893 ◽  
Author(s):  
Tatiana N. Moiseeva ◽  
Chenao Qian ◽  
Norie Sugitani ◽  
Hatice U. Osmanbeyoglu ◽  
Christopher J. Bakkenist

WEE1 kinase is a key regulator of the G2/M transition. The WEE1 kinase inhibitor AZD1775 (WEE1i) induces origin firing in replicating cells. We show that WEE1i induces CDK1-dependent RIF1 phosphorylation and CDK2- and CDC7-dependent activation of the replicative helicase. WEE1 suppresses CDK1 and CDK2 kinase activities to regulate the G1/S transition after the origin licensing is complete. We identify a role for WEE1 in cell cycle regulation and important effects of AZD1775, which is in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document