scholarly journals The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism.

1996 ◽  
Vol 16 (12) ◽  
pp. 6715-6723 ◽  
Author(s):  
J P Hall ◽  
V Cherkasova ◽  
E Elion ◽  
M C Gustin ◽  
E Winter

Mitogen-activated protein (MAP) kinase cascades are conserved signal transduction pathways that are required for eukaryotic cells to respond to a variety of stimuli. Multiple MAP kinase pathways can function within a single cell type; therefore, mechanisms that insulate one MAP kinase pathway from adventitious activations by parallel pathways may exist. We have studied interactions between the mating pheromone response and the osmoregulatory (high-osmolarity glycerol response [HOG]) pathways in Saccharomyces cerevisiae which utilize the MAP kinases Fus3p and Hog1p, respectively. Inactivating mutations in HOG pathway kinases cause an increase in the phosphotyrosine content of Fus3p, greater expression of pheromone-responsive genes, and increased sensitivity to growth arrest by pheromone. Therefore, the HOG pathway represses mating pathway activity. In a HOG1+ strain, Fus3p phosphotyrosine increases modestly and transiently following an increase in the extracellular osmolarity; however, it increases to a greater extent and for a sustained duration in a hog1-delta strain. Thus, the HOG-mediated repression of mating pathway activity may insulate the mating pathway from activation by osmotic stress. A FUS3 allele whose gene product is resistant to the HOG-mediated repression of its phosphotyrosine content has been isolated. This mutant encodes an amino acid substitution in the highly conserved DPXDEP motif in subdomain XI. Other investigators have shown that the corresponding amino acid is also mutated in a gain-of-function allele of the MAP kinase encoded by the rolled locus in Drosophila melanogaster. These data suggest that the DPXDEP motif plays a role in the negative regulation of MAP kinases.

2006 ◽  
Vol 6 (2) ◽  
pp. 317-327 ◽  
Author(s):  
Melanie Heinrich ◽  
Tim Köhler ◽  
Hans-Ulrich Mösch

ABSTRACT In Saccharomyces cerevisiae, the highly conserved Rho-type GTPase Cdc42 is essential for cell division and controls cellular development during mating and invasive growth. The role of Cdc42 in mating has been controversial, but a number of previous studies suggest that the GTPase controls the mitogen-activated protein (MAP) kinase cascade by activating the p21-activated protein kinase (PAK) Ste20. To further explore the role of Cdc42 in pheromone-stimulated signaling, we isolated novel alleles of CDC42 that confer resistance to pheromone. We find that in CDC42(V36A) and CDC42(V36A, I182T) mutant strains, the inability to undergo pheromone-induced cell cycle arrest correlates with reduced phosphorylation of the mating MAP kinases Fus3 and Kss1 and with a decrease in mating efficiency. Furthermore, Cdc42(V36A) and Cdc42(V36A, I182T) proteins show reduced interaction with the PAK Cla4 but not with Ste20. We also show that deletion of CLA4 in a CDC42(V36A, I182T) mutant strain suppresses pheromone resistance and that overexpression of CLA4 interferes with pheromone-induced cell cycle arrest and MAP kinase phosphorylation in CDC42 wild-type strains. Our data indicate that Cla4 has the potential to act as a negative regulator of the mating pathway and that this function of the PAK might be under control of Cdc42. In conclusion, our study suggests that control of pheromone signaling by Cdc42 not only depends on Ste20 but also involves interaction of the GTPase with Cla4.


2002 ◽  
Vol 22 (13) ◽  
pp. 4739-4749 ◽  
Author(s):  
Sean M. O'Rourke ◽  
Ira Herskowitz

ABSTRACT Two Saccharomyces cerevisiae plasma membrane-spanning proteins, Sho1 and Sln1, function during increased osmolarity to activate a mitogen-activated protein (MAP) kinase cascade. One of these proteins, Sho1, utilizes the MAP kinase kinase kinase Ste11 to activate Pbs2. We previously used the FUS1 gene of the pheromone response pathway as a reporter to monitor cross talk in hog1 mutants. Cross talk requires the Sho1-Ste11 branch of the HOG pathway, but some residual signaling, which is STE11 dependent, still occurs in the absence of Sho1. These observations led us to propose the existence of another osmosensor upstream of Ste11. To identify such an osmosensor, we screened for mutants in which the residual signaling in a hog1 sho1 mutant was further reduced. We identified the MSB2 gene, which encodes a protein with a single membrane-spanning domain and a large presumptive extracellular domain. Assay of the FUS1-lacZ reporter (in a hog1 mutant background) showed that sho1 and msb2 mutations both reduced the expression of the reporter partially and that the hog1 sho1 msb2 mutant was severely defective in the expression of the reporter. The use of DNA microarrays to monitor gene expression revealed that Sho1 and Msb2 regulate identical gene sets in hog1 mutants. A role for MSB2 in HOG1 strains was also seen in strains defective in the two known branches that activate Pbs2: an ssk1 sho1 msb2 strain was more osmosensitive than an ssk1 sho1 MSB2 strain. These observations indicate that Msb2 is partially redundant with the Sho1 osmosensing branch for the activation of Ste11.


1997 ◽  
Vol 17 (11) ◽  
pp. 6517-6525 ◽  
Author(s):  
B M Buehrer ◽  
B Errede

Mating pheromone stimulates a mitogen-activated protein (MAP) kinase activation pathway in Saccharomyces cerevisiae that induces cells to differentiate and form projections oriented toward the gradient of pheromone secreted by a mating partner. The polarized growth of mating projections involves new cell wall synthesis, a process that relies on activation of the cell integrity MAP kinase, Mpk1. In this report, we show that Mpk1 activation during pheromone induction requires the transcriptional output of the mating pathway and protein synthesis. Consequently, Mpk1 activation occurs subsequent to the activation of the mating pathway MAP kinase cascade. Additionally, Spa2 and Bni1, a formin family member, are two coil-coil-related proteins that are involved in the timing and other aspects of mating projection formation. Both proteins also affect the timing and extent of Mpk1 activation. This correlation suggests that projection formation comprises part of the pheromone-induced signal that coordinates Mpk1 activation with mating differentiation. Stimulation of Mpk1 activity occurs through the cell integrity phosphorylation cascade and depends on Pkc1 and the redundant MAP/Erk kinases (MEKs), Mkk1 and Mkk2. Surprisingly, Mpk1 activation by pheromone was only partially impaired in cells lacking the MEK kinase Bck1. This Bck1-independent mechanism reveals the existence of an alternative activator of Mkk1/Mkk2 in some strain backgrounds that at least functions under pheromone-induced conditions.


mBio ◽  
2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Pierre Côte ◽  
Traian Sulea ◽  
Daniel Dignard ◽  
Cunle Wu ◽  
Malcolm Whiteway

ABSTRACTScaffold proteins play central roles in the function of many signaling pathways. Among the best-studied examples are the Ste5 and Far1 proteins of the yeastSaccharomyces cerevisiae. These proteins contain three conserved modules, the RING and PH domains, characteristic of some ubiquitin-ligating enzymes, and a vWA domain implicated in protein-protein interactions. In yeast, Ste5p regulates the mating pathway kinases while Far1p coordinates the cellular polarity machinery. Within the fungal lineage, theBasidiomycetesand thePezizomycetescontain a single Far1-like protein, while severalSaccharomycotinaspecies, belonging to the CTG (Candida) clade, contain both a classic Far1-like protein and a Ste5-like protein that lacks the vWA domain. We analyzed the function ofC. albicansSte5p (Cst5p), a member of this class of structurally distinct Ste5 proteins.CST5is essential for mating and still coordinates the mitogen-activated protein (MAP) kinase (MAPK) cascade elements in the absence of the vWA domain; Cst5p interacts with the MEK kinase (MEKK)C. albicansSte11p (CaSte11p) and the MAPK Cek1 as well as with the MEK Hst7 in a vWA domain-independent manner. Cst5p can homodimerize, similar to Ste5p, but can also heterodimerize with Far1p, potentially forming heteromeric signaling scaffolds. We found direct binding between the MEKK CaSte11p and the MEK Hst7p that depends on a mobile acidic loop absent fromS. cerevisiaeSte11p but related to the Ste7-binding region within the vWA domain of Ste5p. Thus, the fungal lineage has restructured specific scaffolding modules to coordinate the proteins required to direct the gene expression, polarity, and cell cycle regulation essential for mating.IMPORTANCEThe mitogen-activated protein (MAP) kinase cascade is an extensively used signaling module in eukaryotic cells, and the ability to regulate these modules is critical for ensuring proper responses to a wide variety of stimuli. One way that cells regulate this signaling module is through scaffold proteins that insulate related pathways against cross talk, improve signaling efficiency, and ensure that signals are connected to the correct response. The Ste5 scaffold of theS. cerevisiaemating response is a well-studied representative of this class of proteins. Using bioinformatics, structural modeling, and molecular genetic approaches, we have investigated the equivalent scaffold in the pathogenic yeastCandida albicans. We show that theC. albicansprotein is structurally distinct from that ofSaccharomyces cerevisiaebut still provides similar functions. Increases in pathway complexity have been associated with changes in scaffold connectivity, and overall, the tethering capacity of the scaffolds has been more conserved than their structural organization.


2006 ◽  
Vol 5 (2) ◽  
pp. 347-358 ◽  
Author(s):  
B. Eisman ◽  
R. Alonso-Monge ◽  
E. Román ◽  
D. Arana ◽  
C. Nombela ◽  
...  

ABSTRACT The Hog1 mitogen-activated protein (MAP) kinase mediates an adaptive response to both osmotic and oxidative stress in the fungal pathogen Candida albicans. This protein also participates in two distinct morphogenetic processes, namely the yeast-to-hypha transition (as a repressor) and chlamydospore formation (as an inducer). We show here that repression of filamentous growth occurs both under serum limitation and under other partially inducing conditions, such as low temperature, low pH, or nitrogen starvation. To understand the relationship of the HOG pathway to other MAP kinase cascades that also play a role in morphological transitions, we have constructed and characterized a set of double mutants in which we deleted both the HOG1 gene and other signaling elements (the CST20, CLA4, and HST7 kinases, the CPH1 and EFG1 transcription factors, and the CPP1 protein phosphatase). We also show that Hog1 prevents the yeast-to-hypha switch independent of all the elements analyzed and that the inability of the hog1 mutants to form chlamydospores is suppressed when additional elements of the CEK1 pathway (CST20 or HST7) are altered. Finally, we report that Hog1 represses the activation of the Cek1 MAP kinase under basal conditions and that Cek1 activation correlates with resistance to certain cell wall inhibitors (such as Congo red), demonstrating a role for this pathway in cell wall biogenesis.


1993 ◽  
Vol 13 (5) ◽  
pp. 3067-3075 ◽  
Author(s):  
K S Lee ◽  
K Irie ◽  
Y Gotoh ◽  
Y Watanabe ◽  
H Araki ◽  
...  

Mitogen-activated protein (MAP) kinases are activated in response to a variety of stimuli through a protein kinase cascade that results in their phosphorylation on tyrosine and threonine residues. The molecular nature of this cascade is just beginning to emerge. Here we report the isolation of a Saccharomyces cerevisiae gene encoding a functional analog of mammalian MAP kinases, designated MPK1 (for MAP kinase). The MPK1 gene was isolated as a dosage-dependent suppressor of the cell lysis defect associated with deletion of the BCK1 gene. The BCK1 gene is also predicted to encode a protein kinase which has been proposed to function downstream of the protein kinase C isozyme encoded by PKC1. The MPK1 gene possesses a 1.5-kb uninterrupted open reading frame predicted to encode a 53-kDa protein. The predicted Mpk1 protein (Mpk1p) shares 48 to 50% sequence identity with Xenopus MAP kinase and with the yeast mating pheromone response pathway components, Fus3p and Kss1p. Deletion of MPK1 resulted in a temperature-dependent cell lysis defect that was virtually indistinguishable from that resulting from deletion of BCK1, suggesting that the protein kinases encoded by these genes function in a common pathway. Expression of Xenopus MAP kinase suppressed the defect associated with loss of MPK1 but not the mating-related defects associated with loss of FUS3 or KSS1, indicating functional conservation between the former two protein kinases. Mutation of the presumptive phosphorylated tyrosine and threonine residues of Mpk1p individually to phenylalanine and alanine, respectively, severely impaired Mpk1p function. Additional epistasis experiments, and the overall architectural similarity between the PKC1-mediated pathway and the pheromone response pathway, suggest that Pkc1p regulates a protein kinase cascade in which Bck1p activates a pair of protein kinases, designated Mkk1p and Mkk2p (for MAP kinase-kinase), which in turn activate Mpk1p.


1993 ◽  
Vol 13 (8) ◽  
pp. 4539-4548
Author(s):  
J Wu ◽  
J K Harrison ◽  
P Dent ◽  
K R Lynch ◽  
M J Weber ◽  
...  

Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases activated by dual phosphorylation on threonine and tyrosine residues. A MAP kinase kinase (MKK1 or MEK1) has been identified as a dual-specificity protein kinase that is sufficient to phosphorylate MAP kinases p42mapk and p44mapk on the regulatory threonine and tyrosine residues. Because of the multiplicity of MAP kinase isoforms and the diverse circumstances and agonists leading to their activation, we thought it unlikely that a single MKK could accommodate this complexity. Indeed, two protein bands with MKK activity have previously been identified after renaturation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We now report the molecular cloning and characterization of a second rat MAP kinase kinase cDNA, MKK2. MKK2 cDNA contains an open reading frame encoding a protein of 400 amino acids, 7 residues longer than MKK1 (MEK1). The amino acid sequence of MKK2 is 81% identical to that of MKK1, but nucleotide sequence differences occur throughout the aligned MKK2 and MKK1 cDNAs, indicating that MKK2 is the product of a distinct gene. MKK1 and MKK2 mRNAs are expressed differently in rat tissues. Both cDNAs when expressed in COS cells displayed the ability to phosphorylate and activate p42mapk and p44mapk, both MKK1 and MKK2 were activated in vivo in response to serum, and both could be phosphorylated and activated by the v-Raf protein in vitro. However, differences between MKK1 and MKK2 in sites of phosphorylation by proline-directed protein kinases predict differences in feedback regulation.


1993 ◽  
Vol 13 (5) ◽  
pp. 3076-3083
Author(s):  
K Irie ◽  
M Takase ◽  
K S Lee ◽  
D E Levin ◽  
H Araki ◽  
...  

The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for normal growth and division of yeast cells. We report here the isolation of the yeast MKK1 and MKK2 (for mitogen-activated protein [MAP] kinase-kinase) genes which, when overexpressed, suppress the cell lysis defect of a temperature-sensitive pkc1 mutant. The MKK genes encode protein kinases most similar to the STE7 product of S. cerevisiae, the byr1 product of Schizosaccharomyces pombe, and vertebrate MAP kinase-kinases. Deletion of either MKK gene alone did not cause any apparent phenotypic defects, but deletion of both MKK1 and MKK2 resulted in a temperature-sensitive cell lysis defect that was suppressed by osmotic stabilizers. This phenotypic defect is similar to that associated with deletion of the BCK1 gene, which is thought to function in the pathway mediated by PCK1. The BCK1 gene also encodes a predicted protein kinase. Overexpression of MKK1 suppressed the growth defect caused by deletion of BCK1, whereas an activated allele of BCK1 (BCK1-20) did not suppress the defect of the mkk1 mkk2 double disruption. Furthermore, overexpression of MPK1, which encodes a protein kinase closely related to vertebrate MAP kinases, suppressed the defect of the mkk1 mkk2 double mutant. These results suggest that MKK1 and MKK2 function in a signal transduction pathway involving the protein kinases encoded by PKC1, BCK1, and MPK1. Genetic epistasis experiments indicated that the site of action for MKK1 and MKK2 is between BCK1 and MPK1.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Atul K. Gupta ◽  
J. M. Seneviratne ◽  
G. K. Joshi ◽  
Anil Kumar

Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) in response to certain environmental conditions, play important role in mating type switching (Fus3) and pathogenicity (Pmk1) in many fungi. In order to determine the roles of such regulatory genes inTilletia indica, the causal pathogen of Karnal bunt (KB) of wheat, semi-quantitative and quantitative RT-PCR was carried out to isolate and determine the expression of MAP kinase homologues during fungal growth and development underin vitroculture. Maximum expression of TiFus3 and TiPmk1 genes were observed at 14th and 21st days of culture and decreased thereafter. To investigate whether the fungus alters the expression levels of same kinases upon interaction with plants, cultures were treated with 1% of host factors (extracted from S-2 stage of wheat spikes). Such treatment induced the expression of MAPks in time dependent manner compared to the absence of host factors. These results suggest that host factor(s) provide certain signal(s) which activate TiFus3 and TiPmk1 during morphogenetic development ofT. indica. The results also provides a clue about the role of host factors in enhancing the disease potential due to induction of MAP kinases involved in fungal development and pathogenecity.


2001 ◽  
Vol 280 (2) ◽  
pp. G229-G240 ◽  
Author(s):  
Soheila Marandi ◽  
Nadine De Keyser ◽  
Alain Saliez ◽  
Anne-Sophie Maernoudt ◽  
Etienne Marc Sokal ◽  
...  

The postreceptor events regulating the signal of insulin downstream in rat intestinal cells have not yet been analyzed. Our objectives were to identify the nature of receptor substrates and phosphorylated proteins involved in the signaling of insulin and to investigate the mechanism(s) by which insulin enhances intestinal hydrolases. In response to insulin, the following proteins were rapidly phosphorylated on tyrosine residues: 1) insulin receptor substrates-1 (IRS-1), -2, and -4; 2) phospholipase C-isoenzyme-γ; 3) the Ras-GTPase-activating protein (GAP) associated with Rho GAP and p62Src; 4) the insulin receptor β-subunit; 5) the p85 subunits of phosphatidylinositol 3-kinase (PI 3-kinase); 6) the Src homology 2 α-collagen protein; 7) protein kinase B; 8) mitogen-activated protein (MAP) kinase-1 and -2; and 9) growth receptor-bound protein-2. Compared with controls, insulin enhanced the intestinal activity of MAP kinase-2 and protein kinase B by two- and fivefold, respectively, but did not enhance p70/S6 ribosomal kinase. Administration of an antireceptor antibody or MAP-kinase inhibitor PD-98059 but not a PI 3-kinase inhibitor (wortmannin) to sucklings inhibited the effects of insulin on mucosal mass and enzyme expression. We conclude that normal rat enterocytes express all of the receptor substrates and mediators involved in different insulin signaling pathways and that receptor binding initiates a signal enhancing brush-border membrane hydrolase, which appears to be regulated by the cascade of MAP kinases but not by PI 3-kinase.


Sign in / Sign up

Export Citation Format

Share Document