scholarly journals EGT2 gene transcription is induced predominantly by Swi5 in early G1.

1996 ◽  
Vol 16 (7) ◽  
pp. 3264-3274 ◽  
Author(s):  
B Kovacech ◽  
K Nasmyth ◽  
T Schuster

In a screen for cell cycle-regulated genes in the yeast Saccharomyces cerevisiae, we have identified a gene, EGT2, which is involved in cell separation in the G1 stage of the cell cycle. Transcription of EGT2 is tightly regulated in a cell cycle-dependent manner. Transcriptional levels peak at the boundary of mitosis and early G1 The transcription factors responsible for EGT2 expression in early G1 are Swi5 and, to a lesser extent, Ace2. Swi5 is involved in the transcriptional activation of the HO gene during late G1 and early S phase, and Ace2 induces CTS1 transcription during early and late G1 We show that Swi5 activates EGT2 transcription as soon as it enters the nucleus at the end of mitosis in a concentration-dependent manner. Since Swi5 is unstable in the nucleus, its level drops rapidly, causing termination of EGT2 transcription before cells are committed to the next cell cycle. However, Swi5 is still able to activate transcription of HO in late G1 in conjunction with additional activators such as Swi4 and Swi6.

2021 ◽  
Author(s):  
Julie Rich-Robinson ◽  
Afton Russell ◽  
Eleanor Mancini ◽  
Maitreyi Das

In fission yeast, polarized cell growth stops during division and resumes after cytokinesis completes and cells separate. It is unclear how growth reactivation is timed to occur immediately after cell separation. We uncoupled these sequential events by delaying cytokinesis with a temporary Latrunculin A treatment. Mitotic cells recovering from treatment initiate end growth during septation, displaying a polar elongation simultaneous with septation (PrESS) phenotype. PrESS cell ends reactivate Cdc42, a major regulator of polarized growth, during septation, but at a fixed time after anaphase B. A candidate screen implicates Rga4, a negative regulator of Cdc42, in this process. We show that Rga4 appears punctate at the cell sides during G2, but is diffuse during mitosis, extending to the ends. While the Morphogenesis Orb6 (MOR) pathway is known to promote cell separation and growth by activating protein synthesis, we find that for polarized growth, removal of Rga4 from the ends is also necessary. Therefore, we propose that growth resumes after division once the MOR pathway is activated and the ends lose Rga4 in a cell-cycle-dependent manner.


2021 ◽  
Author(s):  
Alexandra P Navarro ◽  
Iain M Cheeseman

The kinetochore is a macromolecular structure that is required to ensure proper chromosome segregation during each cell division. The kinetochore is assembled upon a platform of the 16-subunit Constitutive Centromere Associated Network (CCAN), which is present at centromeres throughout the cell cycle. The nature and regulation of CCAN assembly, interactions, and dynamics required to facilitate changing centromere properties and requirements remain to be fully elucidated. The CENP-LN CCAN sub-complex displays a unique cell cycle-dependent localization behavior, peaking in S phase. Here, we demonstrate that phosphorylation of CENP-L and CENP-N controls CENP-LN complex formation and localization in a cell cycle-dependent manner. Mimicking constitutive phosphorylation of either CENP-L or CENP-N or simultaneously preventing phosphorylation of both proteins prevents CENP-LN localization and disrupts chromosome segregation. Together, our work suggests that cycles of phosphorylation and dephosphorylation are critical for CENP-LN complex recruitment and dynamics at centromeres to enable cell cycle-dependent CCAN reorganization.


1996 ◽  
Vol 134 (2) ◽  
pp. 413-427 ◽  
Author(s):  
S L Sanders ◽  
I Herskowitz

A and alpha cells of the yeast Saccharomyces cerevisiae exhibit an axial budding pattern, whereas a/alpha diploid cells exhibit a bipolar pattern. Mutations in BUD3, BUD4, and AXL1 cause a and alpha cells to exhibit the bipolar pattern, indicating that these genes are necessary to specify the axial budding pattern (Chant, J., and I. Herskowitz. 1991. Cell. 65:1203-1212; Fujita, A., C. Oka, Y. Arikawa, T. Katagi, A. Tonouchi, S. Kuhara, and Y. Misumi. 1994. Nature (Lond.). 372:567-570). We cloned and sequenced BUD4, which codes for a large, novel protein (Bud4p) with a potential GTP-binding motif. Bud4p is expressed and localized to the mother/bud neck in all cell types. Most mitotic cells contain two apparent rings of Bud4 immunoreactive staining, as observed for Bud3p (Chant, J., M. Mischke, E. Mitchell, I. Herskowitz, and J.R. Pringle. 1995. J. Cell Biol. 129: 767-778). Early G1 cells contain a single ring of Bud4p immunoreactive staining, whereas cells at START and in S phase lack these rings. The level of Bud4p is also regulated in a cell cycle-dependent manner. Bud4p is inefficiently localized in bud3 mutants and after a temperature shift of a temperature-sensitive mutant, cdc12, defective in the neck filaments. These observations suggest that Bud4p and Bud3p cooperate to recognize a spatial landmark (the neck filaments) during mitosis and support the hypothesis that they subsequently become a landmark for establishing the axial budding pattern in G1.


2019 ◽  
Author(s):  
Simon Gemble ◽  
Géraldine Buhagiar-Labarchède ◽  
Rosine Onclercq-Delic ◽  
Sarah Lambert ◽  
Mounira Amor-Guéret

AbstractTopoisomerase IIα (Topo IIα), a well-conserved double-stranded DNA (dsDNA)-specific decatenase, processes dsDNA catenanes resulting from DNA replication during mitosis. Topo IIα defects lead to an accumulation of ultrafine anaphase bridges (UFBs), a type of chromosome non-disjunction. Topo IIα has been reported to resolve DNA anaphase threads, possibly accounting for the increase in UFB frequency upon Topo IIα inhibition. We hypothesized that the excess UFBs might also result, at least in part, from an impairment of the prevention of UFB formation by Topo IIα. We found that Topo IIα inhibition promotes UFB formation without affecting UFB resolution during anaphase. Moreover, we showed that Topo IIα inhibition promotes the formation of two types of UFBs depending on cell-cycle phase. Topo IIα inhibition during S-phase compromises complete DNA replication, leading to the formation of UFB-containing unreplicated DNA, whereas Topo IIα inhibition during mitosis impedes DNA decatenation at metaphase-anaphase transition, leading to the formation of UFB-containing DNA catenanes. Thus, Topo IIα activity is essential to prevent UFB formation in a cell-cycle dependent manner, but dispensable for UFB resolution during anaphase.


1998 ◽  
Vol 111 (9) ◽  
pp. 1147-1153
Author(s):  
W.Q. Zhao ◽  
H. Li ◽  
K. Yamashita ◽  
X.K. Guo ◽  
T. Hoshino ◽  
...  

We first confirmed an earlier immunohistochemical study showing that immunoreactive TIMP-1-like protein accumulated in the nuclei of human gingival fibroblasts (Gin-1 cells), reaching a maximum in the S phase of the cell cycle (Li, H., Nishio, K., Yamashita, K., Hayakawa, T. and Hoshino, T. (1995). Nagoya J. Med. Sci. 58, 133–142). Then we isolated this protein from a nuclear extract of Gin-1 cells and demonstrated it to be identical to human recombinant TIMP-1 by western blotting, by a sandwich enzyme immunoassay for TIMP-1 and by an assay for matrix metalloproteinase inhibition. The amount of TIMP-1 in the cytosolic fraction of quiescent Gin-1 cells after stimulation by fetal calf serum increased continuously for 48 hours, whereas that in the nuclear extract showed a maximum at 24 hours (S phase) and significantly decreased thereafter. Gin-1 cells expressed mRNAs for both TIMP-2 and TIMP-3 together with mRNA for TIMP-1. However, neither TIMP-2 nor TIMP-3 proteins seemed to accumulate in the nuclei of Gin-1 cells. These facts strongly suggest that TIMP-1 accumulates specifically in the nuclei of Gin-1 cells in a cell cycle-dependent manner.


2006 ◽  
Vol 16 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Jean Schneikert ◽  
Annette Grohmann ◽  
Jürgen Behrens

2000 ◽  
Vol 20 (8) ◽  
pp. 2676-2686 ◽  
Author(s):  
Andrew W. Snowden ◽  
Lisa A. Anderson ◽  
Gill A. Webster ◽  
Neil D. Perkins

ABSTRACT The transcriptional coactivators p300 and CREB binding protein (CBP) are important regulators of the cell cycle, differentiation, and tumorigenesis. Both p300 and CBP are targeted by viral oncoproteins, are mutated in certain forms of cancer, are phosphorylated in a cell cycle-dependent manner, interact with transcription factors such as p53 and E2F, and can be found complexed with cyclinE-Cdk2 in vivo. Moreover, p300-deficient cells show defects in proliferation. Here we demonstrate that transcriptional activation by both p300 and CBP is stimulated by coexpression of the cyclin-dependent kinase inhibitor p21WAF/CIP1. Significantly this stimulation is independent of both the inherent histone acetyltransferase (HAT) activity of p300 and CBP and of the previously reported carboxyl-terminal binding site for cyclinE-Cdk2. Rather, we describe a previously uncharacterized transcriptional repression domain (CRD1) within p300. p300 transactivation is stimulated through derepression of CRD1 by p21. Significantly p21 regulation of CRD1 is dependent on the nature of the core promoter. We suggest that CRD1 provides a novel mechanism through which p300 and CBP can switch activities between the promoters of genes that stimulate growth and those that enhance cell cycle arrest.


2021 ◽  
Author(s):  
Yuting Liu ◽  
Kehui Wang ◽  
Li Huang ◽  
Jicheng Zhao ◽  
Xinpeng Chen ◽  
...  

Centromere identity is defined by nucleosomes containing CENP-A, a histone H3 variant. The deposition of CENP-A at centromeres is tightly regulated in a cell-cycle-dependent manner. We previously reported that the spatiotemporal control of centromeric CENP-A incorporation is mediated by the phosphorylation of CENP-A Ser68. However, a recent report argued that Ser68 phosphoregulation is dispensable for accurate CENP-A loading. Here, we report that the substitution of Ser68 of endogenous CENP-A with either Gln68 or Glu68 severely impairs CENP-A deposition and cell viability. We also find that mice harboring the corresponding mutations are lethal. Together, these results indicate that the dynamic phosphorylation of Ser68 ensures cell-cycle-dependent CENP-A deposition and cell viability.


2019 ◽  
Vol 47 (16) ◽  
pp. 8439-8451 ◽  
Author(s):  
Alberto González-Medina ◽  
Elena Hidalgo ◽  
José Ayté

Abstract In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.


Sign in / Sign up

Export Citation Format

Share Document