scholarly journals Effects of nonsense mutations on nuclear and cytoplasmic adenine phosphoribosyltransferase RNA.

1996 ◽  
Vol 16 (8) ◽  
pp. 4426-4435 ◽  
Author(s):  
O Kessler ◽  
L A Chasin

We have analyzed Chinese hamster ovary (CHO) cell mutants bearing nonsense codons in four of the five exons of the adenine phosphoribosyltransferase (aprt) gene and have found a pattern of mRNA reduction similar to that seen in systems studied previously: a decrease in steady-state mRNA levels of 5- to 10-fold for mutations in exons 1, 2, and 4 but little effect for mutations in the 3'-most exon (exon 5). Nuclear aprt mRNA levels showed a similar decrease. Nonsense-containing aprt mRNA decayed at the same rate as wild-type mRNA in these cell lines after inhibition of transcription with actinomycin D. Nonsense-containing aprt mRNA is associated with polysomes, ruling out a model in which stable residual mRNA escapes degradation by avoiding translation initiation. A tetracycline-responsive form of the aprt gene was used to compare the stability of nonsense-containing and wild-type aprt mRNAs without globally inhibiting transcription. In contrast to measurements made in the presence of actinomycin D, after inhibition of aprt transcription with tetracycline, a nonsense-mediated destabilization of aprt mRNA was indeed demonstrable. The increased rate of decay of cytoplasmic aprt mRNA seen here could account for the nonsense-mediated reduction in steady-state levels of aprt mRNA. However, the low levels of nonsense-bearing aprt mRNA in the nucleus suggest a sensibility of mRNA to translation or translatability before it exits that compartment. Quantitation of the steady-state levels of transcripts containing introns revealed no accumulation of partially spliced aprt RNA and hence no indication of nonsense-mediated aberrancies in splicing. Our results are consistent with a model in which translation facilitates the export of mRNA through a nuclear pore. However, the mechanism of this intriguing nucleocytoplasmic communication remains to be determined.

1986 ◽  
Vol 6 (8) ◽  
pp. 2865-2871
Author(s):  
L McConlogue ◽  
S L Dana ◽  
P Coffino

We selected and characterized a series of mouse S49 cell variants that overproduce ornithine decarboxylase (ODC). Previously, we described variants that have an amplified ODC gene and produce about 500-fold more ODC than the wild-type cells of origin (L. McConlogue and P. Coffino, J. Biol. Chem. 258:12083-12086, 1983). We examined a series of independent variants that overproduce ODC to a lesser degree and found that a number of mechanisms other than gene amplification are responsible for the increased ODC activity. Variants were selected for resistance to 0.1 mM difluoromethylornithine, an inhibitor of ODC, by either a single or a multistep process. All showed increased ODC activity and increased ODC mRNA steady-state levels. The half-life of the enzyme was not increased in any of the variants. In one class of variant the increase of ODC mRNA was sufficient to account for ODC overproduction. In a second class, the rate of synthesis of ODC polypeptide per ODC mRNA was at least four- to eightfold higher than that in wild-type cells. Therefore, these variants were altered in the translatability of ODC mRNA. Southern analysis showed that gene amplification does not account for the increased ODC mRNA levels in any of the variants. In both variant and wild-type cells, ODC activity was responsive to changes in polyamine pools; activity was reduced following augmentation of pool size. This change in activity was associated with modification of the rate of synthesis and degradation of ODC but no change in the level of ODC mRNA.


1986 ◽  
Vol 6 (8) ◽  
pp. 2865-2871 ◽  
Author(s):  
L McConlogue ◽  
S L Dana ◽  
P Coffino

We selected and characterized a series of mouse S49 cell variants that overproduce ornithine decarboxylase (ODC). Previously, we described variants that have an amplified ODC gene and produce about 500-fold more ODC than the wild-type cells of origin (L. McConlogue and P. Coffino, J. Biol. Chem. 258:12083-12086, 1983). We examined a series of independent variants that overproduce ODC to a lesser degree and found that a number of mechanisms other than gene amplification are responsible for the increased ODC activity. Variants were selected for resistance to 0.1 mM difluoromethylornithine, an inhibitor of ODC, by either a single or a multistep process. All showed increased ODC activity and increased ODC mRNA steady-state levels. The half-life of the enzyme was not increased in any of the variants. In one class of variant the increase of ODC mRNA was sufficient to account for ODC overproduction. In a second class, the rate of synthesis of ODC polypeptide per ODC mRNA was at least four- to eightfold higher than that in wild-type cells. Therefore, these variants were altered in the translatability of ODC mRNA. Southern analysis showed that gene amplification does not account for the increased ODC mRNA levels in any of the variants. In both variant and wild-type cells, ODC activity was responsive to changes in polyamine pools; activity was reduced following augmentation of pool size. This change in activity was associated with modification of the rate of synthesis and degradation of ODC but no change in the level of ODC mRNA.


1998 ◽  
Vol 72 (8) ◽  
pp. 6325-6331 ◽  
Author(s):  
Baoling Ying ◽  
Kimberley Smith ◽  
Katherine R. Spindler

ABSTRACT Mouse adenovirus type 1 (MAV-1) mutants with deletions of conserved regions of early region 1A (E1A) or with point mutations that eliminate translation of E1A were used to determine the role of E1A in MAV-1 replication. MAV-1 E1A mutants expressing no E1A protein grew to titers comparable to wild-type MAV-1 titers on mouse fibroblasts (3T6 fibroblasts and fibroblasts derived from Rb+/+,Rb+/−, and Rb−/− transgenic embryos). To test the hypothesis that E1A could induce a quiescent cell to reenter the cell cycle, fibroblasts were serum starved to stop DNA replication and cellular replication and then infected with the E1A mutant and wild-type viruses. All grew to equivalent titers. Steady-state levels of MAV-1 early mRNAs (E1A, E1B, E2, E3, and E4) from 3T6 cells infected with wild-type or E1A mutant virus were examined by Northern analysis. Steady-state levels of mRNAs from the mutant-infected cells were comparable to or greater than the levels found in wild-type virus infections for most of the early regions and for two late genes. The E2 mRNA levels were slightly reduced in all mutant infections relative to wild-type infections. E1A mRNA was not detected from infections with the MAV-1 E1A null mutant, pmE109, or from infections with similar MAV-1 E1A null mutants, pmE112 andpmE113. The implications for the lack of a requirement of E1A in cell culture are discussed.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2002 ◽  
Vol 10 (2) ◽  
pp. 93-102 ◽  
Author(s):  
L. Elaine Epperson ◽  
Sandra L. Martin

Hibernators in torpor dramatically reduce their metabolic, respiratory, and heart rates and core body temperature. These extreme physiological conditions are frequently and rapidly reversed during the winter hibernation season via endogenous mechanisms. This phenotype must derive from regulated expression of the hibernator’s genome; to identify its molecular components, a cDNA subtraction was used to enrich for seasonally upregulated mRNAs in liver of golden-mantled ground squirrels. The relative steady-state levels for seven mRNAs identified by this screen, plus five others, were measured and analyzed for seasonal and stage-specific differences using kinetic RT-PCR. Four mRNAs show seasonal upregulation in which all five winter stages differ significantly from and are higher than summer (α2-macroglobulin, apolipoprotein A1, cathepsin H, and thyroxine-binding globulin). One of these mRNAs, α2-macroglobulin, varies during the winter stages with significantly lower levels at late torpor. None of the 12 mRNAs increased during torpor. The implications for these newly recognized upregulated mRNAs for hibernation as well as more global issues of maintaining steady-state levels of mRNA during torpor are discussed.


1994 ◽  
Vol 14 (10) ◽  
pp. 6663-6673
Author(s):  
J B Scheerer ◽  
G M Adair

Using simple linear fragments of the Chinese hamster adenine phosphoribosyltransferase (APRT) gene as targeting vectors, we have investigated the homology dependence of targeted recombination at the endogenous APRT locus in Chinese hamster ovary (CHO) cells. We have examined the effects of varying either the overall length of targeting sequence homology or the length of 5' or 3' flanking homology on both the frequency of targeted homologous recombination and the types of recombination events that are obtained. We find an exponential (logarithmic) relationship between length of APRT targeting homology and the frequency of targeted recombination at the CHO APRT locus, with the frequency of targeted recombination dependent upon both the overall length of targeting homology and the length of homology flanking each side of the target gene deletion. Although most of the APRT+ recombinants analyzed reflect simple targeted replacement or conversion of the target gene deletion, a significant fraction appear to have arisen by target gene-templated extension and correction of the targeting fragment sequences. APRT fragments with limited targeting homology flanking one side of the target gene deletion yield proportionately fewer target gene conversion events and proportionately more templated extension and vector correction events than do fragments with more substantial flanking homology.


1988 ◽  
Vol 8 (11) ◽  
pp. 4625-4633
Author(s):  
A F Torri ◽  
S L Hajduk

We examined the expression of a nucleus-encoded mitochondrial protein, cytochrome c, during the life cycle of Trypanosoma brucei. The bloodstream forms of T. brucei, the long slender and short stumpy trypanosomes, have inactive mitochondria with no detectable cytochrome-mediated respiration. The insect form of T. brucei, the procyclic trypanosomes, has fully functional mitochondria. Cytochrome c is spectrally undetectable in the bloodstream forms of trypanosomes, but during differentiation to the procyclic form, spectrally detected holo-cytochrome c accumulates rapidly. We have purified T. brucei cytochrome c and raised antibodies that react to both holo- and apo-cytochrome c. In addition, we isolated a partial cDNA to trypanosome cytochrome c. An examination of protein expression and steady-state mRNA levels in T. brucei indicated that bloodstream trypanosomes did not express cytochrome c but maintained significant steady-state levels of cytochrome c mRNA. The results suggest that in T. brucei, cytochrome c is developmentally regulated by a posttranscriptional mechanism which prevents either translation or accumulation of cytochrome c in the bloodstream trypanosomes.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


1993 ◽  
Vol 10 (1) ◽  
pp. 43-49 ◽  
Author(s):  
N S Hawa ◽  
J L H O'Riordan ◽  
S M Farrow

ABSTRACT Incubation of bovine parathyroid cells for 48 h in 0·4 mmol calcium/l had no significant effect on steady-state preproparathyroid hormone (preproPTH) mRNA levels when compared with cells incubated in 1·0 mmol calcium/l, but low calcium concentrations increased the membrane-bound polysomal content of preproPTH mRNA by 200±16% (mean±s.d.). No preproPTH mRNA was detected on free polysomes. Actinomycin D (5 and 10 μg/ml) had no effect on steady-state preproPTH mRNA levels measured in dot-blot assays after 24 h, but reduced levels in cells incubated in 1·0 mmol calcium/l to 54±16% and 39±12% of control values respectively after 48 h of incubation. Similarly, in cells incubated in 0·4 mmol calcium/l, actinomycin D (5 and 10μg/ml) reduced steady-state preproPTH mRNA levels to 57±13% and 45±5% of control values respectively. Actinomycin D did not prevent the rise in polysomal content of preproPTH mRNA induced in cells by incubation in 0·4 mmol calcium/l, but increased polysomal content in cells incubated in 0·4 and 1·0mmol calcium/l by 159±9% and 164±13% respectively after 48 h. These results demonstrate post-transcriptional regulation of PTH synthesis in cultured bovine parathyroid cells, and suggest that this control involves a protein which may be calcium-sensitive.


Sign in / Sign up

Export Citation Format

Share Document