scholarly journals Promoter-proximal poly(A) sites are processed efficiently, but the RNA products are unstable in the nucleus.

1997 ◽  
Vol 17 (4) ◽  
pp. 2127-2135 ◽  
Author(s):  
J M Scott ◽  
M J Imperiale

The presence of two polyadenylation signals in the primary transcript of the human immunodeficiency virus type 1 (HIV-1) provirus leads to a requirement for regulation of 3'-end processing. To ensure that viral genome replication and gene expression occur, polyadenylation must occur at the poly(A) site transcribed from the 3' long terminal repeat (LTR) but not the 5' LTR. Models that have been proposed to explain this regulation include (i) inhibition of the 5' site as a result of proximity to the promoter and (ii) enhancement of the 3' site by U3 sequences that are transcribed upstream of only the 3' poly(A) site. In previous studies designed to investigate these models, a reduction in the levels of steady-state RNA was observed when the HIV-1 poly(A) site was placed within 500 nucleotides of the cap site. Although these findings were interpreted to be the result of promoter proximity effects on 3'-end processing, in vitro studies demonstrated that the HIV-1 poly(A) site was equally functional in promoter-proximal and promoter-distal positions. These results led to the hypothesis that, in vivo, the poly(A) site is fully active at this close distance but the short transcripts produced are highly unstable in the nucleus and undergo rapid degradation, precluding their appearance as abundant mRNAs in the steady-state pool. To investigate the biogenesis of these short RNAs in vivo, experiments were performed to examine directly the nuclear processing rates of the HIV-1 poly(A) site in intact cells. By using recombinant adenoviruses as expression vectors, it is now demonstrated conclusively that the HIV-1 poly(A) site is indeed processed at equivalent levels independent of its distance from the promoter. Although transcripts containing the promoter-proximal poly(A) site are processed efficiently, most undergo degradation in the nucleus instead of nucleocytoplasmic transport.

Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 507 ◽  
Author(s):  
Christopher A. Gonelli ◽  
Georges Khoury ◽  
Rob J. Center ◽  
Damian F.J. Purcell

A prophylactic vaccine eliciting both broad neutralizing antibodies (bNAbs) to the HIV-1 envelope glycoprotein (Env) and strong T cell responses would be optimal for preventing HIV-1 transmissions. Replication incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present authentic-structured, virion-associated Env to elicit bNAbs, and also stimulate T cell responses. Here, we optimize our DNA vaccine plasmids as VLP expression vectors for efficient Env incorporation and budding. The original vector that was used in human trials inefficiently produced VLPs, but maximized safety by inactivating RNA genome packaging, enzyme functions that are required for integration into the host genome, and deleting accessory proteins Vif, Vpr, and Nef. These original DNA vaccine vectors generated VLPs with incomplete protease-mediated cleavage of Gag and were irregularly sized. Mutations to restore function within the defective genes revealed that several of the reverse transcriptase (RT) deletions mediated this immature phenotype. Here, we made efficient budding, protease-processed, and mature-form VLPs that resembled infectious virions by introducing alternative mutations that completely removed the RT domain, but preserved most other safety mutations. These VLPs, either expressed from DNA vectors in vivo or purified after expression in vitro, are potentially useful immunogens that can be used to elicit antibody responses that target Env on fully infectious HIV-1 virions.


2006 ◽  
Vol 398 (3) ◽  
pp. 475-484 ◽  
Author(s):  
Anna C. Hearps ◽  
David A. Jans

In addition to its well-documented role in integration of the viral genome, the HIV-1 enzyme IN (integrase) is thought to be involved in the preceding step of importing the viral cDNA into the nucleus. The ability of HIV to transport its cDNA through an intact nuclear envelope allows HIV-1 to infect non-dividing cells, which is thought to be crucial for the persistent nature of HIV/AIDS. Despite this, the mechanism utilized by HIV-1 to import its cDNA into the nucleus, and the viral proteins involved, remains ill-defined. In the present study we utilize in vitro techniques to assess the nuclear import properties of the IN protein, and show that IN interacts with members of the Imp (Importin) family of nuclear transport proteins with high affinity and exhibits rapid nuclear accumulation within an in vitro assay, indicating that IN possesses potent nucleophilic potential. IN nuclear import appears to be dependent on the Imp α/β heterodimer and Ran GTP (Ran in its GTP-bound state), but does not require ATP. Importantly, we show that IN is capable of binding DNA and facilitating its import into the nucleus of semi-intact cells via a process that involves basic residues within amino acids 186–188 of IN. These results confirm IN as an efficient mediator of DNA nuclear import in vitro and imply the potential for IN to fulfil such a role in vivo. These results may not only aid in highlighting potential therapeutic targets for impeding the progression of HIV/AIDS, but may also be relevant for non-viral gene delivery.


1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


2021 ◽  
Vol 22 (16) ◽  
pp. 8366
Author(s):  
Ignacio Relaño-Rodríguez ◽  
María de la Sierra Espinar-Buitrago ◽  
Vanessa Martín-Cañadilla ◽  
Rafael Gómez-Ramírez ◽  
María Ángeles Muñoz-Fernández

Human immunodeficiency virus (HIV-1) is still a major problem, not only in developing countries but is also re-emerging in several developed countries, thus the development of new compounds able to inhibit the virus, either for prophylaxis or treatment, is still needed. Nanotechnology has provided the science community with several new tools for biomedical applications. G2-S16 is a polyanionic carbosilane dendrimer capable of inhibiting HIV-1 in vitro and in vivo by interacting directly with viral particles. One of the main barriers for HIV-1 eradication is the reservoirs created in primoinfection. These reservoirs, mainly in T cells, are untargetable by actual drugs or immune system. Thus, one approach is inhibiting HIV-1 from reaching these reservoir cells. In this context, macrophages play a main role as they can deliver viral particles to T cells establishing reservoirs. We showed that G2-S16 dendrimer is capable of inhibiting the infection from infected macrophages to healthy T CD4/CD8 lymphocytes by eliminating HIV-1 infectivity inside macrophages, so they are not able to carry infectious particles to other body locations, thus preventing the reservoirs from forming.


1994 ◽  
Vol 4 (3) ◽  
pp. 287-289 ◽  
Author(s):  
K. Conant ◽  
C. Tornatore ◽  
W. Atwood ◽  
K. Meyers ◽  
R. Traub ◽  
...  
Keyword(s):  

2016 ◽  
Vol 27 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Ogheneochukome Lolodi ◽  
Hiroya Yamazaki ◽  
Shotaro Otsuka ◽  
Masahiro Kumeta ◽  
Shige H. Yoshimura

Karyopherin-dependent molecular transport through the nuclear pore complex is maintained by constant recycling pathways of karyopherins coupled with the Ran-dependent cargo catch-and-release mechanism. Although many studies have revealed the bidirectional dynamics of karyopherins, the entire kinetics of the steady-state dynamics of karyopherin and cargo is still not fully understood. In this study, we used fluorescence recovery after photobleaching and fluorescence loss in photobleaching on live cells to provide convincing in vivo proof that karyopherin-mediated nucleocytoplasmic transport of cargoes is bidirectional. Continuous photobleaching of the cytoplasm of live cells expressing NLS cargoes led to progressive decrease of nuclear fluorescence signals. In addition, experimentally obtained kinetic parameters of karyopherin complexes were used to establish a kinetic model to explain the entire cargo import and export transport cycles facilitated by importin β. The results strongly indicate that constant shuttling of karyopherins, either free or bound to cargo, ensures proper balancing of nucleocytoplasmic distribution of cargoes and establishes effective regulation of cargo dynamics by RanGTP.


2003 ◽  
Vol 23 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Young-Hwa Goo ◽  
Young Chang Sohn ◽  
Dae-Hwan Kim ◽  
Seung-Whan Kim ◽  
Min-Jung Kang ◽  
...  

ABSTRACT Many transcription coactivators interact with nuclear receptors in a ligand- and C-terminal transactivation function (AF2)-dependent manner. These include activating signal cointegrator 2 (ASC-2), a recently isolated transcriptional coactivator molecule, which is amplified in human cancers and stimulates transactivation by nuclear receptors and numerous other transcription factors. In this report, we show that ASC-2 belongs to a steady-state complex of approximately 2 MDa (ASC-2 complex [ASCOM]) in HeLa nuclei. ASCOM contains retinoblastoma-binding protein RBQ-3, α/β-tubulins, and trithorax group proteins ALR-1, ALR-2, HALR, and ASH2. In particular, ALR-1/2 and HALR contain a highly conserved 130- to 140-amino-acid motif termed the SET domain, which was recently implicated in histone H3 lysine-specific methylation activities. Indeed, recombinant ALR-1, HALR, and immunopurified ASCOM exhibit very weak but specific H3-lysine 4 methylation activities in vitro, and transactivation by retinoic acid receptor appears to involve ligand-dependent recruitment of ASCOM and subsequent transient H3-lysine 4 methylation of the promoter region in vivo. Thus, ASCOM may represent a distinct coactivator complex of nuclear receptors. Further characterization of ASCOM will lead to a better understanding of how nuclear receptors and other transcription factors mediate transcriptional activation.


Sign in / Sign up

Export Citation Format

Share Document