scholarly journals Transcriptional Repression of Stat6-Dependent Interleukin-4-Induced Genes by BCL-6: Specific Regulation of Iɛ Transcription and Immunoglobulin E Switching

1999 ◽  
Vol 19 (10) ◽  
pp. 7264-7275 ◽  
Author(s):  
Miera B. Harris ◽  
Chih-Chao Chang ◽  
Michael T. Berton ◽  
Nika N. Danial ◽  
Jandong Zhang ◽  
...  

ABSTRACT The BCL-6 proto-oncogene encodes a POZ/zinc-finger transcription factor that is expressed in B cells and a subset of CD4+ T cells within germinal centers. Recent evidence suggests that BCL-6 can act as a sequence-specific repressor of transcription, but the target genes for this activity have not yet been identified. The binding site for BCL-6 shares striking homology to the sites that are the target sequence for the interleukin-4 (IL-4)-induced Stat6 (signal transducers and activators of transcription) signaling molecule. Electrophoretic mobility shift assays demonstrate that BCL-6 can bind, with different affinities, to several DNA elements recognized by Stat6. Expression of BCL-6 can repress the IL-4-dependent induction of immunoglobulin (Ig) germ line ɛ transcripts, but does not repress the IL-4 induction of CD23 transcripts. Consistent with the role of BCL-6 in modulating transcription from the germ line ɛ promoter, BCL-6−/−mice display an increased ability to class switch to IgE in response to IL-4 in vitro. These animals also exhibit a multiorgan inflammatory disease characterized by the presence of a large number of IgE+ B cells. The apparent dysregulation of IgE production is abolished in BCL-6−/− Stat6−/− mice, indicating that BCL-6 regulation of Ig class switching is dependent upon Stat6 signaling. Thus, BCL-6 can modulate the transcription of selective Stat6-dependent IL-4 responses, including IgE class switching in B cells.

2000 ◽  
Vol 68 (9) ◽  
pp. 4913-4922 ◽  
Author(s):  
Humphrey N. Ehigiator ◽  
Andrew W. Stadnyk ◽  
Timothy D. G. Lee

ABSTRACT Infection with the nematode parasite Nippostrongylus brasiliensis induces a pronounced type-2 T-cell response that is associated with marked polyclonal immunoglobulin E (IgE) and IgG1 production in mice. To examine the differential roles of the infection and products produced by nematodes, we investigated a soluble extract of N. brasiliensis for the ability to mediate this type-2 response. We found that the extract induced a marked increase in IgE and IgG1 levels, similar to that induced by the infection. The extract did not affect the level of IgG2a in serum, showing that the effect was specific to IgE and IgG1 (type-2-associated immunoglobulin) rather than inducing a nonspecific increase in all immunoglobulin isotypes. This response was also associated with increased interleukin-4 production in vitro. These results confirm that the extract, like infection, is a strong inducer of polyclonal type-2 responses and a reliable model for investigating the regulation of nematode-induced responses. The extract induced the production of IgG1 when added to in vitro cultures of lipopolysaccharide-stimulated B cells. This provides evidence for the induction of class switch. It did not induce upregulation of IgG1 in naive (unstimulated) B cells or expand B cells in in vitro cultures. Analysis of DNA from the spleens of mice treated with the extract by digestion-circularization PCR demonstrated a marked increase in the occurrence of γ1 switch region gene recombination in the cells in vivo. These results provide strong evidence that soluble worm products are able to mediate the marked polyclonal γ1/ɛ response and that infection is not required to mediate this response. Furthermore, these data provide evidence that the soluble nematode extract induces this effect by causing de novo class switch of B cells and not by an expansion of IgG1 B cells or an increase in antibody production by IgG1 plasma cells.


1993 ◽  
Vol 178 (4) ◽  
pp. 1381-1390 ◽  
Author(s):  
C C Chu ◽  
E E Max ◽  
W E Paul

During immune responses, B lymphocytes may switch from the expression of immunoglobulin M (IgM) to the expression of another isotype (e.g., IgG, IgE, IgA). In stable hybridomas and myelomas expressing a "switched" (S) isotype, DNA deletions between S mu and a "downstream" S region (S region recombination) have been found. In primary B cells, studies of the molecular basis of switching have been limited by the ability to sensitively quantitate the amount of DNA deletion; such studies would be of interest because other nondeletional mechanisms (trans-splicing, alternative processing of a long transcript) have been proposed to account for isotype switching in certain circumstances. We have applied the digestion-circularization polymerase chain reaction (DC-PCR) technique to measure the amount of S region recombination that occurs in the course of class switching in primary B lymphocytes. Resting B cells were cultured in lipopolysaccharide (LPS) and interleukin 4 (IL-4) to stimulate switching to IgG1. These cells begin to express membrane IgG1 at day 2.5 of culture and reach maximum expression by day 4.5. DNA was prepared from cultured cells and analyzed for S mu-S gamma 1 rearrangement by DC-PCR. Chimeric switch regions, indicating S mu-S gamma 1 recombination, were detected in amounts that, in most cases, correlated with surface expression. Furthermore, when cells were sorted on the basis of surface IgG1 expression, a mean of at least one S mu-S gamma 1 rearrangement per cell was seen in five out of seven experiments. In general, the IgG1+ cells obtained at 4.5 and 5.5 d of culture had close to 2 S mu-S gamma 1 rearrangements per cell. In IgG1- cells, S mu-S gamma 1 rearrangements were detectable, but at frequencies substantially lower that in IgG1+ cells. Thus, these results indicate that DNA deletion accompanies class switching in normal B cells stimulated with LPS and IL-4.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2370-2370
Author(s):  
Sridhar Chaganti ◽  
Noelia Begue Pastor ◽  
Gouri Baldwin ◽  
Claire Shannon-Lowe ◽  
Regina Feederle ◽  
...  

Abstract Following primary infection, Epstein-Barr virus (EBV) establishes life long persistence in the host IgD− CD27+ memory B cell compartment rather than the IgD+ CD27+ marginal zone (MZ)-like or the IgD+ CD27− naïve B cell compartments. One possible explanation for such exclusive persistence in memory B cells is that EBV preferentially infects memory B cells. Alternatively, the virus may infect all B cell subsets but then drive MZ and naïve B cells to acquire the Ig isotype-switched phenotype and hypermutated Ig genotype of memory cells. Here we ask whether there is any evidence for one or other hypothesis from in vitro experiments. B cells from healthy donor blood samples were FACS sorted on the basis of IgD/CD27 expression into naïve, MZ, and memory B cell subsets with purities of >99%, >97% and >98% respectively. Analysis of the IgVH sequence further confirmed purity of the FACS sorted B cell subsets. Accordingly, 102 of 105 IgVH sequences amplified from purified naïve B cells were germ-line where as the vast majority of sequences amplified from MZ and memory B cells were mutated. All three B cell subsets expressed equal amounts of CD21 (EBV receptor on B cells), bound similar amounts of virus, and transformed with equal efficiency to establish B lymphoblastoid cell lines (LCLs) in vitro. Naïve B cell transformants upregulated CD27 expression but retained the IgM+, IgD+ phenotype as determined by FACS analysis and RT-PCR; MZ-B derived LCLs likewise were IgM+, IgD+, CD27+; and memory-B derived LCLs were consistently CD27+, IgD− and expressed either IgG, IgA or in some cases IgM. Therefore, EBV infection per se did not induce class switching. However, both naïve and MZ-B derived LCLs could still be induced to switch to IgG in the presence of CD40 ligand and IL-4; signals that are normally provided by T cells in vivo. To assess if EBV infection might drive Ig hypermutation, we carried out IgVH sequence analysis on the naïve-B derived LCL clones. Interestingly, 42 of 114 clonal IgVH sequences amplified from naïve-B derived LCLs had 3 or more mutations and the patterns of mutation seen were consistent with that produced by somatic hypermutation (SHM). Furthermore, within some naïve-B cell derived LCL clones, there were both germ-line and mutated sequences all sharing the same VDJ rearrangement (CDR3 sequence), again implying sequence diversification following EBV transformation of a single naïve B cell. Some intraclonal variation of the already hypermutated IgVH sequence was also noted in memory and MZ-B derived LCLs further suggesting ongoing mutational activity. Consistent with this, activation-induced cytidine deaminase (AID) expression was upregulated in transformants as assessed by real time RT-PCR. Our in vitro data is therefore compatible with a model of EBV persistence where the virus infects all mature B cell subsets but then drives infected naïve B cells to acquire a memory genotype by inducing SHM. In addition, EBV infected naïve and MZ-B cells may undergo Ig class switching to acquire the IgD− CD27+ memory phenotype in the presence of T cell help in vivo. EBV’s ability to induce SHM may also contribute to the lymphomagenic potential of the virus in addition to its B cell transforming and growth promoting properties.


1995 ◽  
Vol 181 (1) ◽  
pp. 181-192 ◽  
Author(s):  
S Delphin ◽  
J Stavnezer

A large body of data indicate that antibody class switching is directed by cytokines by inducing or repressing transcription from unrearranged, or germline, CH genes. Interleukin 4 (IL-4) induces transcription of the germline C epsilon genes in activated B cells and subsequently, cells in this population will undergo switch recombination to immunoglobulin E. Furthermore, the data suggest that transcription of germline C epsilon genes is required for class switching. In this paper we define DNA elements required for induction of transcription of the germline C epsilon genes by IL-4. To do this, segments of DNA from the 5' flank of the initiation sites for germline epsilon RNA were ligated to a luciferase reporter gene and transfected into two mouse B cell lines, one of which can be induced to switch to IgE. By analysis of a series of 5' deletion constructs and linker-scanning mutations, we demonstrate that a 46-bp segment (residing at -126/-79 relative to the first RNA initiation site) contains an IL-4 responsive region. By electrophoretic mobility shift assays, we find that this segment binds three transcription factors: the recently described NF-IL4, one or more members of the C/EBP family of transcription factors, and NF-kappa B/p50. Mutation of any of the binding sites for these three factors abolishes or reduces IL-4 inducibility of the epsilon promoter. A 27-bp segment within this IL-4 response region containing binding sites for NF-IL4 and a C/EBP factor is sufficient to transfer IL-4 inducibility to a minimal c-fos promoter.


Blood ◽  
2005 ◽  
Vol 106 (6) ◽  
pp. 2069-2075 ◽  
Author(s):  
Umaima Al-Alem ◽  
Cuiling Li ◽  
Nathalie Forey ◽  
Francis Relouzat ◽  
Marie-Claude Fondanèche ◽  
...  

Abstract X-linked lymphoproliferative disease (XLP) is characterized by abnormal immune responses to Epstein-Barr virus attributed to inactivating mutations of the SAP gene. Previous studies showed immunoglobulin E (IgE) deficiency and low serum IgG levels in Sap-deficient mice before and after viral infections, which are associated with impaired CD4+ T-helper function. In the present work, we find that signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is expressed in B cells and this expression is down-regulated after stimulation with lipopolysaccharide (LPS) and interleukin 4 (IL-4). We demonstrate that B cells from Sap-deficient mice exhibit reduced IgG and IgA production in vitro. This impairment correlates with decreased circular transcript levels of Iα, Iγ2a, Iγ2b, and Iγ3 after stimulation, which indicate a defective Ig switch recombination in Sap-deficient B cells. While XLP is believed to cause defects in T, natural killer T (NKT), and natural killer (NK) cells, our results indicate that B cells are also affected. (Blood. 2005;106:2069-2075)


1994 ◽  
Vol 180 (2) ◽  
pp. 727-732 ◽  
Author(s):  
H Kimata ◽  
M Fujimoto

We studied the effects of growth hormone (GH), insulin-like growth factor I (IGF-I), IGF-II, and insulin on human immunoglobulin E (IgE) and IgG4 production. GH and IGF-I induced IgE and IgG4 production by normal donors' mononuclear cells (MNC) depleted of sIgE+ and sIgG4+ B cells without affecting IgM, IgG1, IgG2, IgG3, IgA1, or IgA2 production, whereas IGF-II and insulin failed to do so. GH-induced IgE and IgG4 production was specific, and was not mediated by IGF-I, interleukin 4 (IL-4), or IL-13, since it was blocked by anti-GH antibody (Ab), but not by anti-IGF-I Ab, anti-IL-4 Ab, or anti-IL-13 Ab. Conversely, IGF-I-induced IgE and IgG4 production was blocked by anti-IGF-I Ab, but not by anti-GH Ab, anti-IL-4 Ab, or anti-IL-13 Ab. Moreover, interferon alpha (IFN-alpha) or IFN-gamma, which counteracted IL-4-and IL-13-induced IgE and IgG4 production, had no effect on induction by GH or IGF-I. In contrast to MNC, GH or IGF-I failed to induce IgE and IgG4 production by purified sIgE-, sIgG4- B cells. However, in the presence of anti-CD40 monoclonal antibody (mAb), GH or IGF-I induced IgE and IgG4 production by these cells. Purified sIgE+, but not sIgE-, B cells from atopic patients spontaneously produced IgE. GH or IGF-I with anti-CD40 mAb failed to enhance IgE production by sIgE+ B cells, whereas they induced IgE production by sIgE- B cells. Similarly, whereas GH or IGF-I with anti-CD40 mAb failed to enhance IgG4 production by sIgG4+ B cells from atopic patients, they induced IgG4 production by sIgG4- B cells. Again, neither IgE nor IgG4 induction was blocked by anti-IL-4 Ab or anti-IL-13 Ab. These results indicate that GH and IGF-I induce IgE and IgG4 production by class switching in an IL-4- and IL-13-independent mechanism.


Blood ◽  
2004 ◽  
Vol 103 (7) ◽  
pp. 2683-2690 ◽  
Author(s):  
Carla E. Blanco-Betancourt ◽  
Anne Moncla ◽  
Michèle Milili ◽  
Yun Liang Jiang ◽  
Evani M. Viegas-Péquignot ◽  
...  

Abstract Immunodeficiency, centromeric region instability, and facial anomalies (ICF) syndrome is a rare autosomal recessive disease. Mutations in the DNA methyltransferase 3B (DNMT3B) gene are responsible for most ICF cases reported. We investigated the B-cell defects associated with agammaglobulinemia in this syndrome by analyzing primary B cells from 4 ICF patients. ICF peripheral blood (PB) contains only naive B cells; memory and gut plasma cells are absent. Naive ICF B cells bear potentially autoreactive long heavy chain variable regions complementarity determining region 3's (VHCDR3's) enriched with positively charged residues, in contrast to normal PB transitional and mature B cells, indicating that negative selection is impaired in patients. Like anergic B cells in transgenic models, newly generated and immature B cells accumulate in PB. Moreover, these cells secrete immunoglobulins and exhibit increased apoptosis following in vitro activation. However, they are able to up-regulate CD86, indicating that mechanisms other than anergy participate in silencing of ICF B cells. One patient without DNMT3B mutations shows differences in immunoglobulin E (IgE) switch induction, suggesting that immunodeficiency could vary with the genetic origin of the syndrome. In this study, we determined that negative selection breakdown and peripheral B-cell maturation blockage contribute to agammaglobulinemia in the ICF syndrome. (Blood. 2004;103:2683-2690)


2008 ◽  
Vol 82 (1) ◽  
pp. 114-119 ◽  
Author(s):  
G. PASTORELLI ◽  
F. ROUSSET ◽  
J. PENE ◽  
C. PERONNE ◽  
M. G. RONCAROLO ◽  
...  
Keyword(s):  
B Cells ◽  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1359-1359
Author(s):  
Jitra Kriangkum ◽  
Brian J. Taylor ◽  
Erin R. Strachan ◽  
Steven P. Treon ◽  
Michael J. Mant ◽  
...  

Abstract Clonotypic B cells of Waldenstrom’s macroglobulinemia (WM) are characterized as CD20+IgM+IgD+ cells that are usually somatically mutated in IgH VDJ but for some patients, the clonotypic IgH VDJ is germline (unmutated).For both mutated and unmutated clones, WM lack ongoing somatic hypermutation (SHM) and class switch recombination (CSR). This may be due to abnormalities in switching and/or mutator genes. To understand the nature of unswitched tumor B cells, uracil DNA glycosylase (UDG) and activation-induced cytidine deaminase (AID), the two essential elements for CSR, were analysed in WM. Analysis of 12 WM clones characterized by somatic hypermutation showed that the mutation profile of VH genes had normal transition/transversion ratios at C or G, and thus did not suggest UDG abnormalities. Expression of AID was determined by single stage RT-PCR. Out of 14 patients studied (2 unmutated and 12 mutated VH clones), two of them (WM1-01 and WM1-08,with mutation rates of 0% and 6.2% respectively) gave positive bands. In WM1-01, despite having a germline IgH VDJ, AID is consistently expressed in two bone marrow samples collected three years apart and from which the identical unmutated clonotypic VDJ sequence was isolated. Full-length (FL) AID transcripts of WM have a conserved sequence, thus ruling out the possibility of functional defects due to point mutation. In addition, detection of AID in an unmutated VH clone suggested that lack of SHM does not result from an inability to produce AID. In addition to FL transcripts, three other splice variants were identified in both patients. Single cell analysis indicated that only a small compartment (10% or less), not all, of clonotypic B cells expressed AID, and multiple isoforms may be detectable in individual cells. Whether these splice variants that contain truncated C-terminal ends play a role in the regulation of CSR in WM remains to be investigated. Splice variants, nevertheless, may not characterize tumor B cells since up to 10% of AID-expressing normal activated B cells (n=3) also carried them. In vitro activation of clonotypic WM B cells by CD40L and IL4, using conditions that induced CSR in normal B cells, did not yield detectable class switching in WM B cells. In cultures of B cells from WM, the number of non-clonal B cells increased but the clonotypic B cells did not appear to expand, as indicated by the reduction of clonotypic IgM transcript at 5-days of culture. Thus, as well as failing to undergo somatic mutation or class switching, WM tumor B cells appear unresponsive to CD40L+IL4. They may be fundamentally unresponsive to signals for class switching and their clonal expansion may depend upon alternate signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document