scholarly journals The Cytoplasmic Tyrosines of Integrin Subunit β1 Are Involved in Focal Adhesion Kinase Activation

2000 ◽  
Vol 20 (15) ◽  
pp. 5758-5765 ◽  
Author(s):  
Krister Wennerberg ◽  
Annika Armulik ◽  
Takao Sakai ◽  
Marjam Karlsson ◽  
Reinhard Fässler ◽  
...  

ABSTRACT We have previously shown that mutation of the two tyrosines in the cytoplasmic domain of integrin subunit β1 (Y783 and Y795) to phenylalanines markedly reduces the capability of β1A integrins to mediate directed cell migration. In this study, β1-dependent cell spreading was found to be delayed in GD25 cells expressing β1AY783/795F compared to that in wild-type GD25-β1A. Focal adhesion kinase (FAK) tyrosine phosphorylation and activation were severely impaired in response to β1-dependent adhesion in GD25-β1AY783/795F cells compared to that in wild-type GD25-β1A or mutants in which only a single tyrosine was altered (β1AY783F or β1AY795F). Phosphorylation site-specific antibodies selective for FAK phosphotyrosine 397 indicated that the defect in FAK phosphorylation via β1AY783/795F lies at the level of the initial autophosphorylation step. Indeed, β1A-dependent tyrosine phosphorylation of tensin and paxillin was lost in the β1AY783/795F cells, consistent with the impairment in FAK activation. In contrast, p130CAS overall tyrosine phosphorylation was unaffected by the β1 mutations. Despite the defect in β1-mediated FAK activation, FAK was still localized to focal adhesions. Taken together, the phenotype of the GD25-β1AY783/795F cells resembles, but is distinct from, the phenotype observed in FAK-null cells. These observations argue that tyrosines 783 and 795 within the cytoplasmic tail of integrin subunit β1A are critical mediators of FAK activation and cell spreading in GD25 cells.

1997 ◽  
Vol 324 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Alan RICHARDSON ◽  
John D. SHANNON ◽  
Reid B. ADAMS ◽  
Michael D. SCHALLER ◽  
J. Thomas PARSONS

Focal adhesion kinase (pp125FAK) is a protein tyrosine kinase that is localized to focal adhesions in many cell types and which undergoes tyrosine phosphorylation after integrin binding to extracellular matrix. In some cells the C-terminal non-catalytic domain of pp125FAK is expressed as a separate protein referred to as FRNK (FAK-related, non-kinase). We have previously shown that overexpression of FRNK inhibits tyrosine phosphorylation of pp125FAK and its substrates as well as inhibiting cell spreading on fibronectin. In this report we identify Ser148 and Ser151 as residues in FRNK that are phosphorylated after tyrosine phosphorylation of pp125FAK and in response to integrin binding to fibronectin. Tyrosine phosphorylation of pp125FAK appears to be an early event after integrin occupancy, and serine phosphorylation of FRNK occurs significantly later. Treatment of fibroblasts with a series of protein kinase A inhibitors delayed serine phosphorylation of FRNK as well as cell spreading on fibronectin and tyrosine phosphorylation of pp125FAK. However, these PKA inhibitors are unlikely to delay cell spreading simply by preventing serine phosphorylation of FRNK, as overexpression of FRNK containing mutations of Ser148 and Ser151 either singly or jointly to either alanine or glutamate residues did not significantly alter the ability of FRNK to act as an inhibitor of pp125FAK.


1999 ◽  
Vol 10 (8) ◽  
pp. 2507-2518 ◽  
Author(s):  
Yu Shen ◽  
Michael D. Schaller

The focal adhesion kinase (FAK) is discretely localized to focal adhesions via its C-terminal focal adhesion–targeting (FAT) sequence. FAK is regulated by integrin-dependent cell adhesion and can regulate tyrosine phosphorylation of downstream substrates, like paxillin. By the use of a mutational strategy, the regions of FAK that are required for cell adhesion–dependent regulation and for inducing tyrosine phosphorylation of paxillin were determined. The results show that the FAT sequence was the single region of FAK that was required for each function. Furthermore, the FAT sequence of FAK was replaced with a focal adhesion–targeting sequence from vinculin, and the resulting chimera exhibited cell adhesion–dependent tyrosine phosphorylation and could induce paxillin phosphorylation like wild-type FAK. These results suggest that subcellular localization is the major determinant of FAK function.


2011 ◽  
Vol 22 (22) ◽  
pp. 4256-4267 ◽  
Author(s):  
Radoslav Janoštiak ◽  
Ondřej Tolde ◽  
Zuzana Brůhová ◽  
Marian Novotný ◽  
Steven K. Hanks ◽  
...  

Crk-associated substrate (CAS) is a major tyrosine-phosphorylated protein in cells transformed by v-crk and v-src oncogenes and plays an important role in invasiveness of Src-transformed cells. A novel phosphorylation site on CAS, Tyr-12 (Y12) within the ligand-binding hydrophobic pocket of the CAS SH3 domain, was identified and found to be enriched in Src-transformed cells and invasive human carcinoma cells. To study the biological significance of CAS Y12 phosphorylation, phosphomimicking Y12E and nonphosphorylatable Y12F mutants of CAS were studied. The phosphomimicking mutation decreased interaction of the CAS SH3 domain with focal adhesion kinase (FAK) and PTP-PEST and reduced tyrosine phosphorylation of FAK. Live-cell imaging showed that green fluorescent protein–tagged CAS Y12E mutant is, in contrast to wild-type or Y12F CAS, excluded from focal adhesions but retains its localization to podosome-type adhesions. Expression of CAS-Y12F in cas–/– mouse embryonic fibroblasts resulted in hyperphosphorylation of the CAS substrate domain, and this was associated with slower turnover of focal adhesions and decreased cell migration. Moreover, expression of CAS Y12F in Src-transformed cells greatly decreased invasiveness when compared to wild-type CAS expression. These findings reveal an important role of CAS Y12 phosphorylation in the regulation of focal adhesion assembly, cell migration, and invasiveness of Src-transformed cells.


2002 ◽  
Vol 13 (6) ◽  
pp. 2147-2156 ◽  
Author(s):  
Yunhao Liu ◽  
Joost C. Loijens ◽  
Karen H. Martin ◽  
Andrei V. Karginov ◽  
J. Thomas Parsons

ASAP1 (ADP ribosylation factor [ARF]- GTPase-activating protein [GAP] containing SH3, ANK repeats, and PH domain) is a phospholipid-dependent ARF-GAP that binds to and is phosphorylated by pp60Src. Using affinity chromatography and yeast two-hybrid interaction screens, we identified ASAP1 as a major binding partner of protein tyrosine kinase focal adhesion kinase (FAK). GlutathioneS-transferase pull-down and coimmunoprecipitation assays showed the binding of ASAP1 to FAK is mediated by an interaction between the C-terminal SH3 domain of ASAP1 with the second proline-rich motif in the C-terminal region of FAK. Transient overexpression of wild-type ASAP1 significantly retarded the spreading of REF52 cells plated on fibronectin. In contrast, overexpression of a truncated variant of ASAP1 that failed to bind FAK or a catalytically inactive variant of ASAP1 lacking GAP activity resulted in a less pronounced inhibition of cell spreading. Transient overexpression of wild-type ASAP1 prevented the efficient organization of paxillin and FAK in focal adhesions during cell spreading, while failing to significantly alter vinculin localization and organization. We conclude from these studies that modulation of ARF activity by ASAP1 is important for the regulation of focal adhesion assembly and/or organization by influencing the mechanisms responsible for the recruitment and organization of selected focal adhesion proteins such as paxillin and FAK.


1996 ◽  
Vol 7 (3) ◽  
pp. 415-423
Author(s):  
D A Troyer ◽  
A Bouton ◽  
R Bedolla ◽  
R Padilla

Stress fibers, composed of actin filaments, converge upon and associate with a number of proteins, including focal adhesion kinase (p125FAK), and integrin receptors to form areas of close contact between cells and the extracellular matrix referred to as focal adhesions. Treatment of mesangial cells with cAMP-elevating agents causes a loss of focal adhesions, fragmentation of stress fibers, and decreased tyrosine phosphorylation of p125FAK. Thrombin reverses these effects of cAMP, and this model can be used to address some of the cellular mechanisms involved in regulating the loss and formation of focal adhesions. This study reports the effects of cAMP and thrombin on mesangial cell shape, distribution of actin, formation of stress fibers, and tyrosine phosphorylation of p125FAK. cAMP-treated cells display a condensed cell body with slender processes that traverse the area formerly covered by the cell. Addition of thrombin to these cells restores actin filaments (stress fibers) and increases tyrosine phosphorylation of p125FAK, and the cells resume a flattened morphology, even in the continued presence of cAMP-elevating agents. Peptides that mimic the tethered ligand portion of the thrombin receptor have the same effects on cell morphology and stress fiber formation as thrombin. In selected experiments, agents that disrupt either stress fibers (cytochalasin D) or microtubules (nocodazole; Sigma Chemical, St. Louis, MO) were used to examine the role of these cytoskeletal elements in thrombin-induced restoration of focal adhesions. Cytochalasin D blocked the ability of thrombin to restore focal adhesions and phosphorylate p125FAK. The effects of nocodazole, an agent that destabilizes microtubules (but which has no known receptor), are very similar to those of thrombin. The findings discussed in this study indicate that thrombin can modulate the formation of focal adhesions. The organization of stress fibers and microtubules is apparently intimately related to the phosphorylation of p125FAK and can be modulated by soluble receptor agonists such as thrombin or via altered polymerization of microtubules.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1574-1584 ◽  
Author(s):  
Hiroyuki Takahira ◽  
Akihiko Gotoh ◽  
Alec Ritchie ◽  
Hal E. Broxmeyer

Integrin-mediated interaction of hematopoietic progenitor cells with bone marrow stromal extracellular matrix components is important in hematopoiesis. Focal adhesion kinase (pp125FAK) plays a central role in signal transduction through integrin receptors. We studied matrix-integrin interaction and subsequent signaling in human growth factor-dependent cell line, TF-1. Adherence of unstimulated TF-1 cells to fibronectin-coated wells was blocked by antiintegrin β1 and combination of anti-α4 with anti-α5 antibodies, indicating α4β1 and α5β1 integrin mediated adherence. Steel factor (SLF) increased TF-1 adhesion to fibronectin dose-dependently and 10−7 mol/L wortmannin suppressed SLF-induced adhesion. Immunoprecipitation and immunoblotting with antiphosphotyrosine antibody showed that adherence of TF-1 cells to fibronectin without cytokine caused tyrosine phosphorylation of several proteins identified as pp125FAK and paxillin. SLF induced spreading of adherent TF-1 cells and enhanced tyrosine phosphorylation of pp125FAK and paxillin in a dose-dependent manner. Treatment with SLF without plating on fibronectin did not induce tyrosine phosphorylation of pp125FAK. Wortmannin, at 10−7 mol/L, completely abolished SLF-induced enhancement of pp125FAK tyrosine phosphorylation, while c-kit autophosphorylation was not affected. This suggests that increase of pp125FAK tyrosine phosphorylation was mediated through a wortmannin sensitive pathway, rather than by direct action on c-kit tyrosine kinase. Treatment of adherent TF-1 cells with RGDS peptide plus anti-α4 antibody also inhibited SLF-induced enhancement of pp125FAK tyrosine phosphorylation without detachment of TF-1 cells. These data suggest that SLF enhances integrin-fibronectin-dependent tyrosine phosphorylation of pp125FAK through activation of integrin (“inside-out” signaling) and following integrin occupancy. This establishes a novel linkage between c-kit/SLF pathway and integrin fibronectin signaling.


2002 ◽  
Vol 365 (3) ◽  
pp. 591-603 ◽  
Author(s):  
Veronica GABARRA-NIECKO ◽  
Patricia J. KEELY ◽  
Michael D. SCHALLER

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays an important role in normal cellular processes such as adhesion, spreading, migration, proliferation and survival. In addition, FAK is overexpressed in a variety of cancer cells and tumours and may play a role in the development of human cancer. As a prelude to modelling the role of aberrant FAK signalling in the initiation of cancer, the goal of the present study was to engineer point mutations in FAK that would enhance enzymic activity. A number of substitutions that were reported as activating mutations in other tyrosine kinases were introduced into FAK. Glutamic acid substitutions for two lysine residues in the activation loop of FAK, based upon the K650E (Lys650→Glu) mutant of fibroblast-growth-factor receptor 3, were made to create ‘SuperFAK'. Two brain-specific exons were engineered into avian FAK to create FAK6.7. SuperFAK and, to a lesser extent, FAK6.7, exhibited increased catalytic activity in vitro compared with wild-type FAK. The expression of SuperFAK and FAK6.7 in fibroblasts led to hyperphosphorylation of FAK substrates. Although the catalytic activity of SuperFAK and FAK6.7 was largely independent of cell adhesion, tyrosine phosphorylation of downstream substrates was adhesion-dependent. Further, since SuperFAK exhibited the same ability as wild-type FAK to recruit Src family kinases, tyrosine phosphorylation of substrates was likely due to direct phosphorylation by FAK. In addition to enhanced biochemical signalling, SuperFAK also increased the motility of epithelial cells. SuperFAK and FAK6.7 may be valuable molecular tools to investigate the potential role of aberrant FAK signalling in human disease.


Sign in / Sign up

Export Citation Format

Share Document