scholarly journals Tyrosine phosphorylation within the SH3 domain regulates CAS subcellular localization, cell migration, and invasiveness

2011 ◽  
Vol 22 (22) ◽  
pp. 4256-4267 ◽  
Author(s):  
Radoslav Janoštiak ◽  
Ondřej Tolde ◽  
Zuzana Brůhová ◽  
Marian Novotný ◽  
Steven K. Hanks ◽  
...  

Crk-associated substrate (CAS) is a major tyrosine-phosphorylated protein in cells transformed by v-crk and v-src oncogenes and plays an important role in invasiveness of Src-transformed cells. A novel phosphorylation site on CAS, Tyr-12 (Y12) within the ligand-binding hydrophobic pocket of the CAS SH3 domain, was identified and found to be enriched in Src-transformed cells and invasive human carcinoma cells. To study the biological significance of CAS Y12 phosphorylation, phosphomimicking Y12E and nonphosphorylatable Y12F mutants of CAS were studied. The phosphomimicking mutation decreased interaction of the CAS SH3 domain with focal adhesion kinase (FAK) and PTP-PEST and reduced tyrosine phosphorylation of FAK. Live-cell imaging showed that green fluorescent protein–tagged CAS Y12E mutant is, in contrast to wild-type or Y12F CAS, excluded from focal adhesions but retains its localization to podosome-type adhesions. Expression of CAS-Y12F in cas–/– mouse embryonic fibroblasts resulted in hyperphosphorylation of the CAS substrate domain, and this was associated with slower turnover of focal adhesions and decreased cell migration. Moreover, expression of CAS Y12F in Src-transformed cells greatly decreased invasiveness when compared to wild-type CAS expression. These findings reveal an important role of CAS Y12 phosphorylation in the regulation of focal adhesion assembly, cell migration, and invasiveness of Src-transformed cells.

2000 ◽  
Vol 20 (15) ◽  
pp. 5758-5765 ◽  
Author(s):  
Krister Wennerberg ◽  
Annika Armulik ◽  
Takao Sakai ◽  
Marjam Karlsson ◽  
Reinhard Fässler ◽  
...  

ABSTRACT We have previously shown that mutation of the two tyrosines in the cytoplasmic domain of integrin subunit β1 (Y783 and Y795) to phenylalanines markedly reduces the capability of β1A integrins to mediate directed cell migration. In this study, β1-dependent cell spreading was found to be delayed in GD25 cells expressing β1AY783/795F compared to that in wild-type GD25-β1A. Focal adhesion kinase (FAK) tyrosine phosphorylation and activation were severely impaired in response to β1-dependent adhesion in GD25-β1AY783/795F cells compared to that in wild-type GD25-β1A or mutants in which only a single tyrosine was altered (β1AY783F or β1AY795F). Phosphorylation site-specific antibodies selective for FAK phosphotyrosine 397 indicated that the defect in FAK phosphorylation via β1AY783/795F lies at the level of the initial autophosphorylation step. Indeed, β1A-dependent tyrosine phosphorylation of tensin and paxillin was lost in the β1AY783/795F cells, consistent with the impairment in FAK activation. In contrast, p130CAS overall tyrosine phosphorylation was unaffected by the β1 mutations. Despite the defect in β1-mediated FAK activation, FAK was still localized to focal adhesions. Taken together, the phenotype of the GD25-β1AY783/795F cells resembles, but is distinct from, the phenotype observed in FAK-null cells. These observations argue that tyrosines 783 and 795 within the cytoplasmic tail of integrin subunit β1A are critical mediators of FAK activation and cell spreading in GD25 cells.


2021 ◽  
Vol 23 (1) ◽  
pp. 162
Author(s):  
Yu-Shan Lin ◽  
Yi-Hsin Lin ◽  
MyHang Nguyen Thi ◽  
Shih-Chuan Hsiao ◽  
Wen-Tai Chiu

The dysregulation of store-operated Ca2+ entry (SOCE) promotes cancer progression by changing Ca2+ levels in the cytosol or endoplasmic reticulum. Stromal interaction molecule 1 (STIM1), a component of SOCE, is upregulated in several types of cancer and responsible for cancer cell migration, invasion, and metastasis. To explore the impact of STIM1-mediated SOCE on the turnover of focal adhesion (FA) and cell migration, we overexpressed the wild-type and constitutively active or dominant negative variants of STIM1 in an osteosarcoma cell line. In this study, we hypothesized that STIM1-mediated Ca2+ elevation may increase cell migration. We found that constitutively active STIM1 dramatically increased the Ca2+ influx, calpain activity, and turnover of FA proteins, such as the focal adhesion kinase (FAK), paxillin, and vinculin, which impede the cell migration ability. In contrast, dominant negative STIM1 decreased the turnover of FA proteins as its wild-type variant compared to the cells without STIM1 overexpression while promoting cell migration. These unexpected results suggest that cancer cells need an appropriate amount of Ca2+ to control the assembly and disassembly of focal adhesions by regulating calpain activity. On the other hand, overloaded Ca2+ results in excessive calpain activity, which is not beneficial for cancer metastasis.


1997 ◽  
Vol 17 (7) ◽  
pp. 3884-3897 ◽  
Author(s):  
T Nakamoto ◽  
R Sakai ◽  
H Honda ◽  
S Ogawa ◽  
H Ueno ◽  
...  

p130cas (Cas) is an adapter protein that has an SH3 domain followed by multiple SH2 binding motifs in the substrate domain. It also contains a tyrosine residue and a proline-rich sequence near the C terminus, which are the binding sites for the SH2 and SH3 domains of Src kinase, respectively. Cas was originally identified as a major tyrosine-phosphorylated protein in v-Crk- and v-Src-transformed cells. Subsequently, Cas was shown to be inducibly tyrosine phosphorylated upon integrin stimulation; it is therefore regarded as one of the focal adhesion proteins. Using an immunofluorescence study, we examined the subcellular localization of Cas and determined the regions required for its localization to focal adhesions. In nontransformed cells, Cas was localized predominantly to the cytoplasm and partially to focal adhesions. However, in 527F-c-Src-transformed cells, Cas was localized mainly to podosomes, where the focal adhesion proteins are assembled. The localization of Cas to focal adhesions was also observed in cells expressing the kinase-negative 527F/295M-c-Src. A series of analyses with deletion mutants expressed in various cells revealed that the SH3 domain of Cas is necessary for its localization to focal adhesions in nontransformed cells while both the SH3 domain and the C-terminal Src binding domain of Cas are required in 527F-c-Src-transformed cells and fibronectin-stimulated cells. In addition, the localization of Cas to focal adhesions was abolished in Src-negative cells. These results demonstrate that the SH3 domain of Cas and the association of Cas with Src kinase play a pivotal role in the localization of Cas to focal adhesions.


1999 ◽  
Vol 10 (8) ◽  
pp. 2507-2518 ◽  
Author(s):  
Yu Shen ◽  
Michael D. Schaller

The focal adhesion kinase (FAK) is discretely localized to focal adhesions via its C-terminal focal adhesion–targeting (FAT) sequence. FAK is regulated by integrin-dependent cell adhesion and can regulate tyrosine phosphorylation of downstream substrates, like paxillin. By the use of a mutational strategy, the regions of FAK that are required for cell adhesion–dependent regulation and for inducing tyrosine phosphorylation of paxillin were determined. The results show that the FAT sequence was the single region of FAK that was required for each function. Furthermore, the FAT sequence of FAK was replaced with a focal adhesion–targeting sequence from vinculin, and the resulting chimera exhibited cell adhesion–dependent tyrosine phosphorylation and could induce paxillin phosphorylation like wild-type FAK. These results suggest that subcellular localization is the major determinant of FAK function.


2003 ◽  
Vol 370 (3) ◽  
pp. 1039-1045 ◽  
Author(s):  
Huaiyang CHEN ◽  
S. Hao LO

Tensin1 is an actin- and phosphotyrosine-binding protein that localizes to focal adhesions. Recently, we have shown that both tensin1 and a new family member, tensin2, promote cell migration [Chen, Duncan, Bozorgchami and Lo (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 733—738]. Since localization of proteins to particular intracellular compartments often regulates their functions, and Src homology domain 2 may mediate signals related to cell migration, we hypothesize that tensin-mediated cell migration is regulated by the focal adhesion localization and the Src homology domain 2 of tensin. To test this hypothesis, we have analysed the effects of a series of tensin1 mutants on cell migration. Our results have shown that (1) tensin1 contains two focal adhesion-binding sites, (2) the wild-type tensin1 significantly promotes cell migration, (3) mutants with one focal adhesion-binding site do not promote cell migration, (4) the non-focal adhesion localized mutant suppresses cell migration and (5) the mutant that is not able to bind to phosphotyrosine-containing proteins has no effect on cell migration. These results have indicated that focal adhesion localization of tensin1 and the phosphotyrosine-binding activity are two critical factors in regulating tensin-mediated cell migration.


1998 ◽  
Vol 143 (3) ◽  
pp. 861-873 ◽  
Author(s):  
Carlos O. Arregui ◽  
Janne Balsamo ◽  
Jack Lilien

To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions.


2009 ◽  
Vol 297 (1) ◽  
pp. C133-C139 ◽  
Author(s):  
Shirley C. Chen ◽  
Ranvikram S. Khanna ◽  
Darrell C. Bessette ◽  
Lionel A. Samayawardhena ◽  
Catherine J. Pallen

Protein tyrosine phosphatase-α (PTPα) is a widely expressed receptor-type phosphatase that functions in multiple signaling systems. The actions of PTPα can be regulated by its phosphorylation on serine and tyrosine residues, although little is known about the conditions that promote PTPα phosphorylation. In this study, we tested the ability of several extracellular factors to stimulate PTPα tyrosine phosphorylation. The growth factors IGF-I and acidic FGF induced the highest increase in PTPα phosphorylation at tyrosine 789, followed by PMA and lysophosphatidic acid, while EGF had little effect. Further investigation of IGF-I-induced PTPα tyrosine phosphorylation demonstrated that this occurs through a novel Src family kinase-independent mechanism that does not require focal adhesion kinase, phosphatidylinositol 3-kinase, or MEK. We also show that PTPα physically interacts with the IGF-I receptor. In contrast to IGF-I-induced PTPα phosphorylation, this association does not require IGF-I. The interaction of PTPα and the IGF-I receptor is independent of PTPα catalytic activity, and expression of exogenous PTPα does not promote IGF-I receptor tyrosine dephosphorylation, indicating that PTPα does not act as an IGF-I receptor phosphatase. However, PTPα mediates IGF-I signaling, because IGF-I-stimulated fibroblast migration was reduced by ∼50% in cells lacking PTPα or in cells with mutant PTPα lacking the tyrosine 789 phosphorylation site. Our results suggest that PTPα tyrosine phosphorylation can occur in response to diverse stimuli and can be mediated by various tyrosine kinases. In the case of IGF-I, we propose that IGF-I-induced tyrosine 789 phosphorylation of PTPα, possibly catalyzed by the PTPα-associated IGF-I receptor tyrosine kinase, is required for efficient cell migration in response to this growth factor.


1993 ◽  
Vol 13 (2) ◽  
pp. 785-791
Author(s):  
M D Schaller ◽  
C A Borgman ◽  
J T Parsons

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.


2021 ◽  
Author(s):  
Erik S Linklater ◽  
Emily Duncan ◽  
Ke Jun Han ◽  
Algirdas Kaupinis ◽  
Mindaugas Valius ◽  
...  

Rab40b is a SOCS box containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b/Cullin5 binding decreases cell motility and invasive potential, and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b/Cullin5 dependent localized ubiquitylation and degradation. Thus, we propose a model where the Rab40b/Cullin5 dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.


2002 ◽  
Vol 227 (6) ◽  
pp. 412-424 ◽  
Author(s):  
Imre L. Szabó ◽  
Rama Pai ◽  
Michael K. Jones ◽  
George R. Ehring ◽  
Hirofumi Kawanaka ◽  
...  

Repair of superficial gastric mucosal injury is accomplished by the process of restitution—migration of epithelial cells to restore continuity of the mucosal surface. Actin filaments, focal adhesions, and focal adhesion kinase (FAK) play crucial roles in cell motility essential for restitution. We studied whether epidermal growth factor (EGF) and/or indomethacin (IND) affect cell migration, actin stress fiber formation, and/or phosphorylation of FAK and tensin in wounded gastric monolayers. Human gastric epithelial monolayers (MKN 28 cells) were wounded and treated with either vehicle or 0.5 mM IND for 16 hr followed by EGF. EGF treatment significantly stimulated cell migration and actin stress fiber formation, and increased FAK localization to focal adhesions, and phosphorylation of FAK and tensin, whereas IND inhibited all these at the baseline and EGF-stimulated conditions. IND-induced inhibition of FAK phosphorylation preceded changes in actin polymerization, indicating that actin depolymerization might be the consequence of decreased FAK activity. In in vivo experiments, rats received either vehicle or IND (5 mg/kg i.g.), and 3 min later, they received water or 5% hypertonic NaCl; gastric mucosa was obtained at 1, 4, and 8 hr after injury. Four and 8 hr after hypertonic injury, FAK phosphorylation was induced in gastric mucosa compared with controls. IND pretreatment significantly delayed epithelial restitution in vivo, and reduced FAK phosphorylation and recruitment to adhesion points, as well as actin stress fiber formation in migrating surface epithelial cells. Our study indicates that FAK, tensin, and actin stress fibers are likely mediators of EGF-stimulated cell migration in wounded human gastric monolayers and potential targets for IND-induced inhibition of restitution.


Sign in / Sign up

Export Citation Format

Share Document