scholarly journals Feedback Phosphorylation of the Yeast a-Factor Receptor Requires Activation of the Downstream Signaling Pathway from G Protein through Mitogen-Activated Protein Kinase

2000 ◽  
Vol 20 (2) ◽  
pp. 563-574 ◽  
Author(s):  
Ying Feng ◽  
Nicholas G. Davis

ABSTRACT The two yeast pheromone receptors, the a and α-factor receptors, share many functional similarities: both G protein-coupled receptors couple to the same downstream signal transduction pathway, and both receptors undergo feedback regulation involving increased phosphorylation on their C-terminal domains in response to ligand challenge. The present work, which focuses on the signaling mechanism controlling this feedback phosphorylation, indicates one striking difference. While the α-factor-induced phosphorylation of the α-factor receptor does not require activation of the downstream G protein-directed signaling pathway (B. Zanolari, S. Raths, B. Singer-Kruger, and H. Riezman, Cell 71:755–763, 1992), the a-factor-induced phosphorylation of the a-factor receptor (Ste3p) clearly does. Induced Ste3p phosphorylation was blocked in cells with disruptions of various components of the pheromone response pathway, indicating a requirement of pathway components extending from the G protein down through the mitogen-activated protein kinase (MAPK). Furthermore, Ste3p phosphorylation can be induced in the absence of the a-factor ligand when the signaling pathway is artificially activated, indicating that the liganded receptor is not required as a substrate for induced phosphorylation. While the activation of signaling is critical for the feedback phosphorylation of Ste3p, pheromone-induced gene transcription, one of the major outcomes of pheromone signaling, appears not to be required. This conclusion is indicated by three results. First,ste12Δ cells differ from cells with disruptions of the upstream signaling elements (e.g., ste4Δ,ste20Δ, ste5Δ, ste11Δ,ste7Δ, or fus3Δ kss1Δ cells) in that they clearly retain some capacity for inducing Ste3p phosphorylation. Second, while activated alleles of STE11 andSTE12 induce a strong transcriptional response, they fail to induce a-factor receptor phosphorylation. Third, blocking of new pheromone-induced protein synthesis with cycloheximide fails to block phosphorylation. These findings are discussed within the context of a recently proposed model for pheromone signaling (P. M. Pryciak and F. A. Huntress, Genes Dev. 12:2684–2697, 1998): a key step of this model is the activation of the MAPK Fus3p through the Gβγ-dependent relocalization of the Ste5p-MAPK cascade to the plasma membrane. Ste3p phosphorylation may involve activated MAPK Fus3p feeding back upon plasma membrane targets.

1999 ◽  
Vol 277 (6) ◽  
pp. G1165-G1172 ◽  
Author(s):  
Cynthia R. L. Webster ◽  
M. Sawkat Anwer

cAMP stimulates Na+-taurocholate (TC) cotransport by translocating the Na+-TC-cotransporting peptide (Ntcp) to the plasma membrane. The present study was undertaken to determine whether the phosphatidylinositol-3-kinase (PI3K)-signaling pathway is involved in cAMP-mediated translocation of Ntcp. The ability of cAMP to stimulate TC uptake declined significantly when hepatocytes were pretreated with PI3K inhibitors wortmannin or LY-294002. Wortmannin inhibited cAMP-mediated translocation of Ntcp to the plasma membrane. cAMP stimulated protein kinase B (PKB) activity by twofold within 5 min, an effect inhibited by wortmannin. Neither basal mitogen-activated protein kinase (MAPK) activity nor cAMP-mediated inhibition of MAPK activity was affected by wortmannin. cAMP also stimulated p70S6K activity. However, rapamycin, an inhibitor of p70S6K, failed to inhibit cAMP-mediated stimulation of TC uptake, indicating that the effect of cAMP is not mediated via p70S6K. Cytochalasin D, an inhibitor of actin filament formation, inhibited the ability of cAMP to stimulate TC uptake and Ntcp translocation. Together, these results suggest that the stimulation of TC uptake and Ntcp translocation by cAMP may be mediated via the PI3K/PKB signaling pathway and requires intact actin filaments.


1993 ◽  
Vol 13 (9) ◽  
pp. 5659-5669 ◽  
Author(s):  
M Tyers ◽  
B Futcher

In the yeast Saccharomyces cerevisiae, the Cdc28 protein kinase controls commitment to cell division at Start, but no biologically relevant G1-phase substrates have been identified. We have studied the kinase complexes formed between Cdc28 and each of the G1 cyclins Cln1, Cln2, and Cln3. Each complex has a specific array of coprecipitated in vitro substrates. We identify one of these as Far1, a protein required for pheromone-induced arrest at Start. Treatment with alpha-factor induces a preferential association and/or phosphorylation of Far1 by the Cln1, Cln2, and Cln3 kinase complexes. This induced interaction depends upon the Fus3 protein kinase, a mitogen-activated protein kinase homolog that functions near the bottom of the alpha-factor signal transduction pathway. Thus, we trace a path through which a mitogen-activated protein kinase regulates a Cdc2 kinase.


Sign in / Sign up

Export Citation Format

Share Document