scholarly journals ATF4 Degradation Relies on a Phosphorylation-Dependent Interaction with the SCFβTrCPUbiquitin Ligase

2001 ◽  
Vol 21 (6) ◽  
pp. 2192-2202 ◽  
Author(s):  
Irina Lassot ◽  
Emmanuel Ségéral ◽  
Clarisse Berlioz-Torrent ◽  
Herve Durand ◽  
Lionel Groussin ◽  
...  

ABSTRACT The ubiquitin-proteasome pathway regulates gene expression through protein degradation. Here we show that the F-box protein βTrCP, the receptor component of the SCF E3 ubiquitin ligase responsible for IκBα and β-catenin degradation, is colocalized in the nucleus with ATF4, a member of the ATF-CREB bZIP family of transcription factors, and controls its stability. Association between the two proteins depends on ATF4 phosphorylation and on ATF4 serine residue 219 present in the context of DSGXXXS, which is similar but not identical to the motif found in other substrates of βTrCP. ATF4 ubiquitination in HeLa cells is enhanced in the presence of βTrCP. The F-box-deleted βTrCP protein behaves as a negative transdominant mutant that inhibits ATF4 ubiquitination and degradation and, subsequently, enhances its activity in cyclic AMP-mediated transcription. ATF4 represents a novel substrate for the SCFβTrCP complex, which is the first mammalian E3 ubiquitin ligase identified so far for the control of the degradation of a bZIP transcription factor.

2002 ◽  
Vol 22 (13) ◽  
pp. 4463-4476 ◽  
Author(s):  
Catherine Berset ◽  
Peter Griac ◽  
Rebecca Tempel ◽  
Janna La Rue ◽  
Curt Wittenberg ◽  
...  

ABSTRACT Degradation of Saccharomyces cerevisiae G1 cyclins Cln1 and Cln2 is mediated by the ubiquitin-proteasome pathway and involves the SCF E3 ubiquitin-ligase complex containing the F-box protein Grr1 (SCFGrr1). Here we identify the domain of Cln2 that confers instability and describe the signals in Cln2 that result in binding to Grr1 and rapid degradation. We demonstrate that mutants of Cln2 that lack a cluster of four Cdc28 consensus phosphorylation sites are highly stabilized and fail to interact with Grr1 in vivo. Since one of the phosphorylation sites lies within the Cln2 PEST motif, a sequence rich in proline, aspartate or glutamate, serine, and threonine residues found in many unstable proteins, we fused various Cln2 C-terminal domains containing combinations of the PEST and the phosphoacceptor motifs to stable reporter proteins. We show that fusion of the Cln2 domain to a stabilized form of the cyclin-dependent kinase inhibitor Sic1 (ΔN-Sic1), a substrate of SCFCdc4, results in degradation in a phosphorylation-dependent manner. Fusion of Cln2 degradation domains to ΔN-Sic1 switches degradation of Sic1 from SCFCdc4 to SCFGrr1. ΔN-Sic1 fused with a Cln2 domain containing the PEST motif and four phosphorylation sites binds to Grr1 and is unstable and ubiquitinated in vivo. Interestingly, the phosphoacceptor domain of Cln2 binds to Grr1 but is not ubiquitinated and is stable. In summary, we have identified a small transferable domain in Cln2 that can redirect a stabilized SCFCdc4 target for SCFGrr1-mediated degradation by the ubiquitin-proteasome pathway.


2012 ◽  
Vol 444 (3) ◽  
pp. 581-590 ◽  
Author(s):  
Xue-Yuan Dong ◽  
Xiaoying Fu ◽  
Songqing Fan ◽  
Peng Guo ◽  
Dan Su ◽  
...  

We reported previously that the tumour suppressor ATBF1 (AT motif-binding factor 1) formed an autoregulatory feedback loop with oestrogen–ERα (oestrogen receptor α) signalling to regulate oestrogen-dependent cell proliferation in breast cancer cells. In this loop ATBF1 inhibits the function of oestrogen–ERα signalling, whereas ATBF1 protein levels are fine-tuned by oestrogen-induced transcriptional up-regulation as well as UPP (ubiquitin–proteasome pathway)-mediated protein degradation. In the present study we show that EFP (oestrogen-responsive finger protein) is an E3 ubiquitin ligase mediating oestrogen-induced ATBF1 protein degradation. Knockdown of EFP increases ATBF1 protein levels, whereas overexpression of EFP decreases ATBF1 protein levels. EFP interacts with and ubiquitinates ATBF1 protein. Furthermore, we show that EFP is an important factor in oestrogen-induced ATBF1 protein degradation in which some other factors are also involved. In human primary breast tumours the levels of ATBF1 protein are positively correlated with the levels of EFP protein, as both are directly up-regulated ERα target gene products. However, the ratio of ATBF1 protein to EFP protein is negatively correlated with EFP protein levels. Functionally, ATBF1 antagonizes EFP-mediated cell proliferation. These findings not only establish EFP as the E3 ubiquitin ligase for oestrogen-induced ATBF1 protein degradation, but further support the autoregulatory feedback loop between ATBF1 and oestrogen–ERα signalling and thus implicate ATBF1 in oestrogen-dependent breast development and carcinogenesis.


Science ◽  
2020 ◽  
pp. eabc9359
Author(s):  
Charlie Y. Shi ◽  
Elena R. Kingston ◽  
Benjamin Kleaveland ◽  
Daniel H. Lin ◽  
Michael W. Stubna ◽  
...  

MicroRNAs (miRNAs) associate with Argonaute (AGO) proteins to direct widespread post-transcriptional gene repression. Although association with AGO typically protects miRNAs from nucleases, extensive pairing to some unusual target RNAs can trigger miRNA degradation. Here we found that this target-directed miRNA degradation (TDMD) required the ZSWIM8 Cullin-RING E3 ubiquitin ligase. This and other findings suggested and supported a mechanistic model of TDMD in which target-directed proteolysis of AGO by the ubiquitin–proteasome pathway exposes the miRNA for degradation. Moreover, loss-of-function studies indicated that the ZSWIM8 Cullin-RING ligase accelerates degradation of numerous miRNAs in cells of mammals, flies, and nematodes, thereby specifying the half-lives of most short-lived miRNAs. These results elucidate the mechanism of TDMD and expand its inferred role in shaping miRNA levels in bilaterian animals.


2016 ◽  
Vol 28 (10) ◽  
pp. 1530-1536 ◽  
Author(s):  
Miaomiao Shao ◽  
Lili Li ◽  
Shushu Song ◽  
Weicheng Wu ◽  
Peike Peng ◽  
...  

2017 ◽  
Vol 37 (8) ◽  
Author(s):  
Shasha Tao ◽  
Pengfei Liu ◽  
Gang Luo ◽  
Montserrat Rojo de la Vega ◽  
Heping Chen ◽  
...  

ABSTRACT Activation of the stress-responsive transcription factor NRF2 is the major line of defense to combat oxidative or electrophilic insults. Under basal conditions, NRF2 is continuously ubiquitylated by the KEAP1-CUL3-RBX1 E3 ubiquitin ligase complex and is targeted to the proteasome for degradation (the canonical mechanism). However, the path from the CUL3 complex to ultimate proteasomal degradation was previously unknown. p97 is a ubiquitin-targeted ATP-dependent segregase that extracts ubiquitylated client proteins from membranes, protein complexes, or chromatin and has an essential role in autophagy and the ubiquitin proteasome system (UPS). In this study, we show that p97 negatively regulates NRF2 through the canonical pathway by extracting ubiquitylated NRF2 from the KEAP1-CUL3 E3 complex, with the aid of the heterodimeric cofactor UFD1/NPL4 and the UBA-UBX-containing protein UBXN7, for efficient proteasomal degradation. Given the role of NRF2 in chemoresistance and the surging interest in p97 inhibitors to treat cancers, our results indicate that dual p97/NRF2 inhibitors may offer a more potent and long-term avenue of p97-targeted treatment.


2008 ◽  
Vol 28 (23) ◽  
pp. 7126-7138 ◽  
Author(s):  
Yutaka Shima ◽  
Takito Shima ◽  
Tomoki Chiba ◽  
Tatsuro Irimura ◽  
Pier Paolo Pandolfi ◽  
...  

ABSTRACT PML, a nuclear protein, interacts with several transcription factors and their coactivators, such as HIPK2 and p300, resulting in the activation of transcription. Although PML is thought to achieve transcription activation by stabilizing the transcription factor complex, little is known about the underlying molecular mechanism. To clarify the role of PML in transcription regulation, we purified the PML complex and identified Fbxo3 (Fbx3), Skp1, and Cullin1 as novel components of this complex. Fbx3 formed SCFFbx3 ubiquitin ligase and promoted the degradation of HIPK2 and p300 by the ubiquitin-proteasome pathway. PML inhibited this degradation through a mechanism that unexpectedly did not involve inhibition of the ubiquitination of HIPK2. PML, Fbx3, and HIPK2 synergistically activated p53-induced transcription. Our findings suggest that PML stabilizes the transcription factor complex by protecting HIPK2 and p300 from SCFFbx3-induced degradation until transcription is completed. In contrast, the leukemia-associated fusion PML-RARα induced the degradation of HIPK2. We discuss the roles of PML and PML-retinoic acid receptor α, as well as those of HIPK2 and p300 ubiquitination, in transcriptional regulation and leukemogenesis.


2018 ◽  
Vol 29 (13) ◽  
pp. 1542-1554 ◽  
Author(s):  
Robert F. Shearer ◽  
Kari-Anne Myrum Frikstad ◽  
Jessie McKenna ◽  
Rachael A. McCloy ◽  
Niantao Deng ◽  
...  

Primary cilia are crucial for signal transduction in a variety of pathways, including hedgehog and Wnt. Disruption of primary cilia formation (ciliogenesis) is linked to numerous developmental disorders (known as ciliopathies) and diseases, including cancer. The ubiquitin–proteasome system (UPS) component UBR5 was previously identified as a putative positive regulator of ciliogenesis in a functional genomics screen. UBR5 is an E3 ubiquitin ligase that is frequently deregulated in tumors, but its biological role in cancer is largely uncharacterized, partly due to a lack of understanding of interacting proteins and pathways. We validated the effect of UBR5 depletion on primary cilia formation using a robust model of ciliogenesis, and identified CSPP1, a centrosomal and ciliary protein required for cilia formation, as a UBR5-interacting protein. We show that UBR5 ubiquitylates CSPP1, and that UBR5 is required for cytoplasmic organization of CSPP1-comprising centriolar satellites in centrosomal periphery, suggesting that UBR5-mediated ubiquitylation of CSPP1 or associated centriolar satellite constituents is one underlying requirement for cilia expression. Hence, we have established a key role for UBR5 in ciliogenesis that may have important implications in understanding cancer pathophysiology.


2015 ◽  
Vol 88 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Ovidiu Vasile Bochis ◽  
Bogdan Fetica ◽  
Catalin Vlad ◽  
Patriciu Achimas-Cadariu ◽  
Alexandru Irimie

     A normal evolution of the cell-cycle phases consists of multiple consecutive events, which makes it a highly complex process. Its preservation is regulated by Cyclin-Cdks (cyclin-dependent kinases) interactions and protein degradation, which is often controlled by the ubiquitin-mediated proteolysis.The goal of this review is to emphasize the most important features of the regulation of the cell-cycle involved in cancerogenesis, by presenting the involvement of E3 ubiquitin ligases SCF (Skp1-Cul1-F-box protein) and APC/C (Anaphase-promoting complex/cyclosome) in human malignancies. Also, we discuss the importance of the ubiquitin proteasome pathway blockade in cancer treatment. We know that a better understanding of the regulatory biology of the cell cycle can lead to the development of new target therapies for cancer.


2008 ◽  
Vol 19 (3) ◽  
pp. 899-911 ◽  
Author(s):  
Shoshiro Hirayama ◽  
Yuji Yamazaki ◽  
Akira Kitamura ◽  
Yukako Oda ◽  
Daisuke Morito ◽  
...  

McKusick–Kaufman syndrome (MKKS) is a recessively inherited human genetic disease characterized by several developmental anomalies. Mutations in the MKKS gene also cause Bardet–Biedl syndrome (BBS), a genetically heterogeneous disorder with pleiotropic symptoms. However, little is known about how MKKS mutations lead to disease. Here, we show that disease-causing mutants of MKKS are rapidly degraded via the ubiquitin–proteasome pathway in a manner dependent on HSC70 interacting protein (CHIP), a chaperone-dependent ubiquitin ligase. Although wild-type MKKS quickly shuttles between the centrosome and cytosol in living cells, the rapidly degraded mutants often fail to localize to the centrosome. Inhibition of proteasome functions causes MKKS mutants to form insoluble structures at the centrosome. CHIP and partner chaperones, including heat-shock protein (HSP)70/heat-shock cognate 70 and HSP90, strongly recognize MKKS mutants. Modest knockdown of CHIP by RNA interference moderately inhibited the degradation of MKKS mutants. These results indicate that the MKKS mutants have an abnormal conformation and that chaperone-dependent degradation mediated by CHIP is a key feature of MKKS/BBS diseases.


2006 ◽  
Vol 81 (3) ◽  
pp. 1174-1185 ◽  
Author(s):  
Masayuki Shirakura ◽  
Kyoko Murakami ◽  
Tohru Ichimura ◽  
Ryosuke Suzuki ◽  
Tetsu Shimoji ◽  
...  

ABSTRACT Hepatitis C virus (HCV) core protein is a major component of viral nucleocapsid and a multifunctional protein involved in viral pathogenesis and hepatocarcinogenesis. We previously showed that the HCV core protein is degraded through the ubiquitin-proteasome pathway. However, the molecular machinery for core ubiquitylation is unknown. Using tandem affinity purification, we identified the ubiquitin ligase E6AP as an HCV core-binding protein. E6AP was found to bind to the core protein in vitro and in vivo and promote its degradation in hepatic and nonhepatic cells. Knockdown of endogenous E6AP by RNA interference increased the HCV core protein level. In vitro and in vivo ubiquitylation assays showed that E6AP promotes ubiquitylation of the core protein. Exogenous expression of E6AP decreased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected Huh-7 cells. Furthermore, knockdown of endogenous E6AP by RNA interference increased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected cells. Taken together, our results provide evidence that E6AP mediates ubiquitylation and degradation of HCV core protein. We propose that the E6AP-mediated ubiquitin-proteasome pathway may affect the production of HCV particles through controlling the amounts of viral nucleocapsid protein.


Sign in / Sign up

Export Citation Format

Share Document