scholarly journals Comparison of ABF1 and RAP1 in Chromatin Opening and Transactivator Potentiation in the Budding Yeast Saccharomyces cerevisiae

2004 ◽  
Vol 24 (20) ◽  
pp. 9152-9164 ◽  
Author(s):  
Arunadevi Yarragudi ◽  
Tsuyoshi Miyake ◽  
Rong Li ◽  
Randall H. Morse

ABSTRACT Autonomously replicating sequence binding factor 1 (ABF1) and repressor/activator protein 1 (RAP1) from budding yeast are multifunctional, site-specific DNA-binding proteins, with roles in gene activation and repression, replication, and telomere structure and function. Previously we have shown that RAP1 can prevent nucleosome positioning in the vicinity of its binding site and have provided evidence that this ability to create a local region of “open” chromatin contributes to RAP1 function at the HIS4 promoter by facilitating binding and activation by GCN4. Here we examine and directly compare to that of RAP1 the ability of ABF1 to create a region of open chromatin near its binding site and to contribute to activated transcription at the HIS4, ADE5,7, and HIS7 promoters. ABF1 behaves similarly to RAP1 in these assays, but it shows some subtle differences from RAP1 in the character of the open chromatin region near its binding site. Furthermore, although the two factors can similarly enhance activated transcription at the promoters tested, RAP1 binding is continuously required for this enhancement, but ABF1 binding is not. These results indicate that ABF1 and RAP1 achieve functional similarity in part via mechanistically distinct pathways.

1991 ◽  
Vol 11 (11) ◽  
pp. 5648-5659
Author(s):  
F J McNally ◽  
J Rine

Copies of the mating-type genes are present at three loci on chromosome III of the yeast Saccharomyces cerevisiae. The genes at the MAT locus are transcribed, whereas the identical genes at the silent loci, HML and HMR, are not transcribed. Several genes, including the four SIR genes, and two sites, HMR-E and HMR-I, are required for repression of transcription at the HMR locus. Three elements have been implicated in the function of the HMR-E silencer: a binding site for the RAP1 protein, a binding site for the ABF1 protein, and an 11-bp consensus sequence common to nearly all autonomously replicating sequence (ARS) elements (putative origins of DNA replication). RAP1 and ABF1 binding sites of different sequence than those found at HMR-E were joined with an 11-bp ARS consensus sequence to form a synthetic silencer. The synthetic silencer was able to repress transcription of the HMRa1 gene, confirming that binding sites for RAP1 and ABF1 and the 11-bp ARS consensus sequence were the functional components of the silencer in vivo. Mutations in the ABF1 binding site or in the ARS consensus sequence of the synthetic silencer caused nearly complete derepression of transcription at HMR. The ARS consensus sequence mutation also eliminated the ARS activity of the synthetic silencer. These data suggested that replication initiation at the HMR-E silencer was required for establishment of the repressed state at the HMR locus.


1991 ◽  
Vol 11 (11) ◽  
pp. 5648-5659 ◽  
Author(s):  
F J McNally ◽  
J Rine

Copies of the mating-type genes are present at three loci on chromosome III of the yeast Saccharomyces cerevisiae. The genes at the MAT locus are transcribed, whereas the identical genes at the silent loci, HML and HMR, are not transcribed. Several genes, including the four SIR genes, and two sites, HMR-E and HMR-I, are required for repression of transcription at the HMR locus. Three elements have been implicated in the function of the HMR-E silencer: a binding site for the RAP1 protein, a binding site for the ABF1 protein, and an 11-bp consensus sequence common to nearly all autonomously replicating sequence (ARS) elements (putative origins of DNA replication). RAP1 and ABF1 binding sites of different sequence than those found at HMR-E were joined with an 11-bp ARS consensus sequence to form a synthetic silencer. The synthetic silencer was able to repress transcription of the HMRa1 gene, confirming that binding sites for RAP1 and ABF1 and the 11-bp ARS consensus sequence were the functional components of the silencer in vivo. Mutations in the ABF1 binding site or in the ARS consensus sequence of the synthetic silencer caused nearly complete derepression of transcription at HMR. The ARS consensus sequence mutation also eliminated the ARS activity of the synthetic silencer. These data suggested that replication initiation at the HMR-E silencer was required for establishment of the repressed state at the HMR locus.


1998 ◽  
Vol 143 (7) ◽  
pp. 1947-1960 ◽  
Author(s):  
John Lippincott ◽  
Rong Li

We previously showed that the budding yeast Saccharomyces cerevisiae assembles an actomyosin-based ring that undergoes a contraction-like size change during cytokinesis. To learn more about the biochemical composition and activity of this ring, we have characterized the in vivo distribution and function of Cyk2p, a budding yeast protein that exhibits significant sequence similarity to the cdc15/PSTPIP family of cleavage furrow proteins. Video microscopy of cells expressing green fluorescent protein (GFP)-tagged Cyk2p revealed that Cyk2p forms a double ring that coincides with the septins through most of the cell cycle. During cytokinesis, however, the Cyk2 double ring merges with the actomyosin ring and exhibits a contraction-like size change that is dependent on Myo1p. The septin double ring, in contrast, does not undergo the contraction-like size change but the separation between the two rings increases during cytokinesis. These observations suggest that the septin-containing ring is dynamically distinct from the actomyosin ring and that Cyk2p transits between the two types of structures. Gene disruption of CYK2 does not affect the assembly of the actomyosin ring but results in rapid disassembly of the ring during the contraction phase, leading to incomplete cytokinesis, suggesting that Cyk2p has an important function in modulating the stability of the actomyosin ring during contraction. Overexpression of Cyk2p also blocks cytokinesis, most likely due to a loss of the septins from the bud neck, indicating that Cyk2p may also play a role in regulating the localization of the septins.


Microbiology ◽  
1997 ◽  
Vol 143 (6) ◽  
pp. 1867-1876 ◽  
Author(s):  
P. A. Radcliffe ◽  
K. M. Binley ◽  
J. Trevethick ◽  
M. Hall ◽  
P. E. Sudbery

2012 ◽  
Vol 40 (4) ◽  
pp. 836-841 ◽  
Author(s):  
Jonathan Houseley

Unstable non-coding RNAs are produced from thousands of loci in all studied eukaryotes (and also prokaryotes), but remain of largely unknown function. The present review summarizes the mechanisms of eukaryotic non-coding RNA degradation and highlights recent findings regarding function. The focus is primarily on budding yeast where the bulk of this research has been performed, but includes results from higher eukaryotes where available.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Henriette Miko ◽  
Yunjiang Qiu ◽  
Bjoern Gaertner ◽  
Maike Sander ◽  
Uwe Ohler

Abstract Background Co-localized combinations of histone modifications (“chromatin states”) have been shown to correlate with promoter and enhancer activity. Changes in chromatin states over multiple time points (“chromatin state trajectories”) have previously been analyzed at promoter and enhancers separately. With the advent of time series Hi-C data it is now possible to connect promoters and enhancers and to analyze chromatin state trajectories at promoter-enhancer pairs. Results We present TimelessFlex, a framework for investigating chromatin state trajectories at promoters and enhancers and at promoter-enhancer pairs based on Hi-C information. TimelessFlex extends our previous approach Timeless, a Bayesian network for clustering multiple histone modification data sets at promoter and enhancer feature regions. We utilize time series ATAC-seq data measuring open chromatin to define promoters and enhancer candidates. We developed an expectation-maximization algorithm to assign promoters and enhancers to each other based on Hi-C interactions and jointly cluster their feature regions into paired chromatin state trajectories. We find jointly clustered promoter-enhancer pairs showing the same activation patterns on both sides but with a stronger trend at the enhancer side. While the promoter side remains accessible across the time series, the enhancer side becomes dynamically more open towards the gene activation time point. Promoter cluster patterns show strong correlations with gene expression signals, whereas Hi-C signals get only slightly stronger towards activation. The code of the framework is available at https://github.com/henriettemiko/TimelessFlex. Conclusions TimelessFlex clusters time series histone modifications at promoter-enhancer pairs based on Hi-C and it can identify distinct chromatin states at promoter and enhancer feature regions and their changes over time.


2007 ◽  
Vol 3 ◽  
pp. 117693510700300 ◽  
Author(s):  
B.P. Ingalls ◽  
B.P. Duncker ◽  
D.R. Kim ◽  
B.J. McConkey

Proteins involved in the regulation of the cell cycle are highly conserved across all eukaryotes, and so a relatively simple eukaryote such as yeast can provide insight into a variety of cell cycle perturbations including those that occur in human cancer. To date, the budding yeast Saccharomyces cerevisiae has provided the largest amount of experimental and modeling data on the progression of the cell cycle, making it a logical choice for in-depth studies of this process. Moreover, the advent of methods for collection of high-throughput genome, transcriptome, and proteome data has provided a means to collect and precisely quantify simultaneous cell cycle gene transcript and protein levels, permitting modeling of the cell cycle on the systems level. With the appropriate mathematical framework and sufficient and accurate data on cell cycle components, it should be possible to create a model of the cell cycle that not only effectively describes its operation, but can also predict responses to perturbations such as variation in protein levels and responses to external stimuli including targeted inhibition by drugs. In this review, we summarize existing data on the yeast cell cycle, proteomics technologies for quantifying cell cycle proteins, and the mathematical frameworks that can integrate this data into representative and effective models. Systems level modeling of the cell cycle will require the integration of high-quality data with the appropriate mathematical framework, which can currently be attained through the combination of dynamic modeling based on proteomics data and using yeast as a model organism.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 453-470
Author(s):  
Sue Biggins ◽  
Needhi Bhalla ◽  
Amy Chang ◽  
Dana L Smith ◽  
Andrew W Murray

Abstract Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair α-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.


Sign in / Sign up

Export Citation Format

Share Document