scholarly journals Posttranscriptional Downregulation of c-IAP2 by the Ubiquitin Protein Ligase c-IAP1 In Vivo

2005 ◽  
Vol 25 (8) ◽  
pp. 3348-3356 ◽  
Author(s):  
Dietrich B. Conze ◽  
Lori Albert ◽  
David A. Ferrick ◽  
David V. Goeddel ◽  
Wen-Chen Yeh ◽  
...  

ABSTRACT Inhibitor of apoptosis proteins (IAPs) c-IAP1 and c-IAP2 were identified as part of the tumor necrosis factor receptor 2 (TNFR2) signaling complex and have been implicated as intermediaries in tumor necrosis factor alpha signaling. Like all RING domain-containing IAPs, c-IAP1 and c-IAP2 have ubiquitin protein ligase (E3) activity. To explore the function of c-IAP1 in a physiologic setting, c-IAP1-deficient mice were generated by homologous gene recombination. These animals are viable and have no obvious sensitization to proapoptotic stimuli. Cells from c-IAP1−/− mice do, however, express markedly elevated levels of c-IAP2 protein in the absence of increased c-IAP2 mRNA. In contrast to reports implicating c-IAPs in the activation of NF-κB, resting and cytokine-induced NF-κB activation was not impaired in c-IAP1-deficient cells. Transient transfection studies with wild-type and E3-defective c-IAP1 revealed that c-IAP2 is a direct target for c-IAP1-mediated ubiquitination and subsequent degradation, which are potentiated by the adaptor function of TRAF2. Thus, the c-IAPs represent a pair of TNFR-associated ubiquitin protein ligases in which one regulates the expression of the other by a posttranscriptional and E3-dependent mechanism.

2010 ◽  
Vol 30 (17) ◽  
pp. 4354-4366 ◽  
Author(s):  
Bhagirath Chaurasia ◽  
Jan Mauer ◽  
Linda Koch ◽  
Julia Goldau ◽  
Anja-Sterner Kock ◽  
...  

ABSTRACT Phosphoinositide-dependent kinase 1 (PDK-1) represents an important signaling component in the phosphatidylinositol 3-kinase (PI3K) pathway, which plays an essential role in controlling a coordinated innate immune response. Here, we show that mice with conditional disruption of PDK-1 specifically in myeloid lineage cells (PDK-1Δmyel mice) show enhanced susceptibility to lipopolysaccharide (LPS)-induced septic shock accompanied by exaggerated liver failure. Furthermore, primary macrophages derived from PDK-1Δmyel mice lack LPS- and Pam3CSK4-stimulated AKT activity but exhibit increased mRNA expression and release of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Moreover, LPS- and Pam3CSK4-stimulated primary macrophages exhibit enhanced phosphorylation and degradation of IκBα. While immediate upstream Toll-like receptor 4 (TLR-4)-induced signaling, including IL-1 receptor (IL-1R)-associated protein kinase (IRAK) phosphorylation, is unaltered in the absence of PDK-1, macrophages from PDK-1Δmyel mice exhibit prolonged ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF-6) in response to LPS stimulation. These experiments reveal a novel PDK-1-dependent negative feedback inhibition of TLR-induced NF-κB activation in macrophages in vivo.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 976
Author(s):  
Jong Min Kim ◽  
Uk Lee ◽  
Jin Yong Kang ◽  
Seon Kyeong Park ◽  
Eun Jin Shin ◽  
...  

This study was conducted to assess the protective effect of walnut (Juglans regia L.) extract on amyloid beta (Aβ)1-42-induced institute of cancer research (ICR) mice. By conducting a Y-maze, passive avoidance, and Morris water maze tests with amyloidogenic mice, it was found that walnut extract ameliorated behavioral dysfunction and memory deficit. The walnut extract showed a protective effect on the antioxidant system and cholinergic system by regulating malondialdehyde (MDA) levels, superoxide dismutase (SOD) contents, reduced glutathione (GSH) contents, acetylcholine (ACh) levels, acetylcholinesterase (AChE) activity, and protein expression of AChE and choline acetyltransferase (ChAT). Furthermore, the walnut extract suppressed Aβ-induced abnormality of mitochondrial function by ameliorating reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP contents. Finally, the walnut extract regulated the expression of zonula occludens-1 (ZO-1) and occludin concerned with blood–brain barrier (BBB) function, expression of tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 1 (TNFR1), phosphorylated c-Jun N-terminal kinase (p-JNK), phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (p-IκB), cyclooxygenase-2 (COX-2), and interleukin 1 beta (IL-1β), related to neuroinflammation and the expression of phosphorylated protein kinase B (p-Akt), caspase-3, hyperphosphorylation of tau (p-tau), and heme oxygenase-1 (HO-1), associated with the Aβ-related Akt pathway.


1995 ◽  
Vol 59 (10) ◽  
pp. 1470-1475 ◽  
Author(s):  
André Herbelin ◽  
Lucienne Chatenoud ◽  
Pascale Roux-Lombard ◽  
Donat De Groote ◽  
Christophe Legendre ◽  
...  

1997 ◽  
Vol 273 (1) ◽  
pp. H200-H207 ◽  
Author(s):  
A. D. Moller ◽  
P. O. Grande

The dose-response effects of intravenous infusion of prostacyclin on capillary permeability (the capillary filtration coefficient technique), hydrostatic capillary pressure, transcapillary filtration, and vascular tone were analyzed in vivo on cat skeletal muscle from a normal and an increased permeability level. Increased permeability was accomplished by intra-arterial infusion of tumor necrosis factor-alpha or histamine. Permeability effects of bradykinin were also analyzed. Prostacyclin decreased capillary permeability by 8% at a dose of 0.1 ng.kg-1.min-1 and at most by 30% below control attained at 2 ng.kg-1.min-1, also with no effect on vascular tone and hydrostatic capillary pressure. The permeability increase by tumor necrosis factor-alpha and histamine (by 54 and 73%) was more than counteracted by the simultaneous infusion of prostacyclin at 2 ng.kg-1.min-1. The vasodilator effect of tumor necrosis factor-alpha was also restituted. Indomethacin (prostacyclin inhibitor)-induced increase in capillary permeability (25%) was more than restituted by prostacyclin at 2 ng.kg-1.min-1. Surprisingly, bradykinin decreased capillary permeability. We conclude that endogenous prostacyclin may be a physiological regulator of capillary permeability and that low-dose prostacyclin infusion may have clinical relevance in states of increased permeability.


1998 ◽  
Vol 188 (7) ◽  
pp. 1343-1352 ◽  
Author(s):  
Eleni Douni ◽  
George Kollias

Despite overwhelming evidence that enhanced production of the p75 tumor necrosis factor receptor (p75TNF-R) accompanies development of specific human inflammatory pathologies such as multi-organ failure during sepsis, inflammatory liver disease, pancreatitis, respiratory distress syndrome, or AIDS, the function of this receptor remains poorly defined in vivo. We show here that at levels relevant to human disease, production of the human p75TNF-R in transgenic mice results in a severe inflammatory syndrome involving mainly the pancreas, liver, kidney, and lung, and characterized by constitutively increased NF-κB activity in the peripheral blood mononuclear cell compartment. This process is shown to evolve independently of the presence of TNF, lymphotoxin α, or the p55TNF-R, although coexpression of a human TNF transgene accelerated pathology. These results establish an independent role for enhanced p75TNF-R production in the pathogenesis of inflammatory disease and implicate the direct involvement of this receptor in a wide range of human inflammatory pathologies.


2009 ◽  
Vol 16 (3) ◽  
pp. 397-407 ◽  
Author(s):  
Robin T. Clark ◽  
Andrew Hope ◽  
Marta Lopez-Fraga ◽  
Neal Schiller ◽  
David D. Lo

ABSTRACT Bacterial pathogens use virulence strategies to invade epithelial barriers, but active processes of epithelial cells may also contribute to the endocytosis of microbial particles. To focus on the latter, we studied the uptake of fixed and fluorescently labeled bacterial particles in intestinal and bronchoepithelial cell cultures and found it to be enhanced in Caco-2BBe and NCI-H292 cells after treatment with tumor necrosis factor alpha and an agonist antibody against the lymphotoxin beta receptor. Confocal fluorescence microscopy, flow cytometry, and transmission electron microscopy revealed that Staphylococcus aureus and Yersinia enterocolitica were readily endocytosed, although there was scant uptake of Shigella sonnei, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae particles. Endocytosed Staphylococcus was often associated with cytoplasmic claudin-4 vesicles; this was not found for Yersinia, suggesting that cytokine treatment upregulated two distinct endocytosis pathways. Interestingly, when Staphylococcus and Yersinia were coincubated with epithelial monolayers, the cells were unlikely to take up Yersinia unless they had also endocytosed large numbers of Staphylococcus particles, although the two bacteria were apparently processed in distinct compartments. Cytokine treatment induced an upregulation and redistribution of β1 integrin to the apical surface of NCI-H292 cells; consistent with this effect, treatment with anti-β1 integrin antibody blocked uptake of both Yersinia and Staphylococcus in NCI-H292 and Caco-2BBe cells. Our results suggest that capture of bacterial particles by mucosal epithelial cells is selective and that different endocytic mechanisms are enhanced by proinflammatory cytokines.


Sign in / Sign up

Export Citation Format

Share Document