scholarly journals Splicing of a Critical Exon of Human Survival Motor Neuron Is Regulated by a Unique Silencer Element Located in the Last Intron

2006 ◽  
Vol 26 (4) ◽  
pp. 1333-1346 ◽  
Author(s):  
Nirmal K. Singh ◽  
Natalia N. Singh ◽  
Elliot J. Androphy ◽  
Ravindra N. Singh

ABSTRACT Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene, SMN1 and SMN2. In spinal muscular atrophy (SMA), SMN2 is not able to compensate for the loss of SMN1 due to exclusion of exon 7. Here we describe a novel inhibitory element located immediately downstream of the 5′ splice site in intron 7. We call this element intronic splicing silencer N1 (ISS-N1). Deletion of ISS-N1 promoted exon 7 inclusion in mRNAs derived from the SMN2 minigene. Underlining the dominant role of ISS-N1 in exon 7 skipping, abrogation of a number of positive cis elements was tolerated when ISS-N1 was deleted. Confirming the silencer function of ISS-N1, an antisense oligonucleotide against ISS-N1 restored exon 7 inclusion in mRNAs derived from the SMN2 minigene or from endogenous SMN2. Consistently, this oligonucleotide increased the levels of SMN protein in SMA patient-derived cells that carry only the SMN2 gene. Our findings underscore for the first time the profound impact of an evolutionarily nonconserved intronic element on SMN2 exon 7 splicing. Considering that oligonucleotides annealing to intronic sequences do not interfere with exon-junction complex formation or mRNA transport and translation, ISS-N1 provides a very specific and efficient therapeutic target for antisense oligonucleotide-mediated correction of SMN2 splicing in SMA.

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Maximilian Paul Thelen ◽  
Brunhilde Wirth ◽  
Min Jeong Kye

AbstractSpinal muscular atrophy (SMA) is a neuromuscular disease characterized by loss of lower motor neurons, which leads to proximal muscle weakness and atrophy. SMA is caused by reduced survival motor neuron (SMN) protein levels due to biallelic deletions or mutations in the SMN1 gene. When SMN levels fall under a certain threshold, a plethora of cellular pathways are disturbed, including RNA processing, protein synthesis, metabolic defects, and mitochondrial function. Dysfunctional mitochondria can harm cells by decreased ATP production and increased oxidative stress due to elevated cellular levels of reactive oxygen species (ROS). Since neurons mainly produce energy via mitochondrial oxidative phosphorylation, restoring metabolic/oxidative homeostasis might rescue SMA pathology. Here, we report, based on proteome analysis, that SMA motor neurons show disturbed energy homeostasis due to dysfunction of mitochondrial complex I. This results in a lower basal ATP concentration and higher ROS production that causes an increase of protein carbonylation and impaired protein synthesis in SMA motor neurons. Counteracting these cellular impairments with pyruvate reduces elevated ROS levels, increases ATP and SMN protein levels in SMA motor neurons. Furthermore, we found that pyruvate-mediated SMN protein synthesis is mTOR-dependent. Most importantly, we showed that ROS regulates protein synthesis at the translational initiation step, which is impaired in SMA. As many neuropathies share pathological phenotypes such as dysfunctional mitochondria, excessive ROS, and impaired protein synthesis, our findings suggest new molecular interactions among these pathways. Additionally, counteracting these impairments by reducing ROS and increasing ATP might be beneficial for motor neuron survival in SMA patients.


2016 ◽  
Vol 10 ◽  
pp. JEN.S33122 ◽  
Author(s):  
Saif Ahmad ◽  
Kanchan Bhatia ◽  
Annapoorna Kannan ◽  
Laxman Gangwani

Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.


2018 ◽  
Vol 29 (2) ◽  
pp. 96-110 ◽  
Author(s):  
Kelsey M. Gray ◽  
Kevin A. Kaifer ◽  
David Baillat ◽  
Ying Wen ◽  
Thomas R. Bonacci ◽  
...  

SMN protein levels inversely correlate with the severity of spinal muscular atrophy. The SCFSlmbE3 ligase complex interacts with a degron embedded within the C-terminal self-oligomerization domain of SMN. The findings elucidate a model whereby accessibility of the SMN degron is regulated by self-multimerization.


Author(s):  
V. Manochithra ◽  
G. Sumithra

Spinal muscular atrophy (SMA) describes a group of disorders associated with spinal motor neuron loss. In this review we provide an update regarding the most common form of SMA, proximal or 5q SMA, and discuss the contemporary approach to diagnosis and treatment. Electromyography and muscle biopsy features of denervation were once the basis for diagnosis, but molecular testing for homozygous deletion or mutation of the SMN1 gene allows efficient and specific diagnosis. In combination with loss of SMN1, patients retain variable numbers of copies of a second similar gene, SMN2, which produce reduced levels of the survival motor neuron (SMN) protein that are insufficient for normal motor neuron function. Despite the fact that the understanding of how ubiquitous reduction of SMN protein leads to motor neuron loss remains incomplete, several promising therapeutics are now being tested in early phase clinical trials. This proposed model investigates the symptoms and scans readings from the initial MRI scan images of babies with mutation progress and SMN proteins formation benchmark values for this particular disorder SMA and further this segmented parameters are acquitted into the K-means clustering technique that predict the report with the disorder symptoms with MSE (mean square error) values that helps the babies in future to take prevention measures to overcome this problem.


2019 ◽  
Vol 28 (19) ◽  
pp. 3282-3292 ◽  
Author(s):  
Celeste M Pilato ◽  
Jae Hong Park ◽  
Lingling Kong ◽  
Constantin d’Ydewalle ◽  
David Valdivia ◽  
...  

Abstract A pathological hallmark of spinal muscular atrophy (SMA) is severe motor neuron (MN) loss, which results in muscle weakness and often infantile or childhood mortality. Although it is well established that deficient expression of survival motor neuron (SMN) protein causes SMA, the molecular pathways that execute MN cell death are poorly defined. The c-Jun NH2-terminal kinases (JNKs) are stress-activated kinases with multiple substrates including c-Jun, which can be activated during neuronal injury and neurodegenerative disease leading to neuronal apoptosis. Recently, increased JNK-c-Jun signaling was reported in SMA raising the possibility that JNK inhibitors could be a novel treatment for this disease. We examined JNK-c-Jun activity in SMA mouse and human cultured cells and tissues. Anisomycin treatment of human SMA fibroblasts and sciatic nerve ligation in SMA mice provoked robust phosphorylated-c-Jun (p-c-Jun) expression indicating that SMN-deficiency does not prevent activation of the stress-induced JNK-c-Jun signaling pathway. Despite retained capacity to activate JNK-c-Jun, we observed no basal increase of p-c-Jun levels in SMA compared to control cultured cells, human or mouse spinal cord tissues, or mouse MNs during the period of MN loss in severe SMA model mice. In both controls and SMA, ~50% of α-MN nuclei express p-c-Jun with decreasing expression during the early postnatal period. Together these studies reveal no evidence of stress-activated JNK-c-Jun signaling in MNs of SMA mice or human tissues, but do highlight the important role of JNK-c-Jun activity during normal MN development raising caution about JNK antagonism in this pediatric neuromuscular disease.


2003 ◽  
Vol 162 (5) ◽  
pp. 919-932 ◽  
Author(s):  
Michelle L. McWhorter ◽  
Umrao R. Monani ◽  
Arthur H.M. Burghes ◽  
Christine E. Beattie

Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by a loss of α motoneurons in the spinal cord. SMA is caused by low levels of the ubiquitously expressed survival motor neuron (Smn) protein. As it is unclear how low levels of Smn specifically affect motoneurons, we have modeled SMA in zebrafish, a vertebrate model organism with well-characterized motoneuron development. Using antisense morpholinos to reduce Smn levels throughout the entire embryo, we found motor axon–specific pathfinding defects. Reduction of Smn in individual motoneurons revealed that smn is acting cell autonomously. These results show for the first time, in vivo, that Smn functions in motor axon development and suggest that these early developmental defects may lead to subsequent motoneuron loss.


2021 ◽  
Vol 22 (16) ◽  
pp. 8378
Author(s):  
Eric William Ottesen ◽  
Diou Luo ◽  
Natalia Nikolaevna Singh ◽  
Ravindra Narayan Singh

Intronic splicing silencer N1 (ISS-N1) located within Survival Motor Neuron 2 (SMN2) intron 7 is the target of a therapeutic antisense oligonucleotide (ASO), nusinersen (Spinraza), which is currently being used for the treatment of spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. The discovery of ISS-N1 as a promising therapeutic target was enabled in part by Anti-N1, a 20-mer ASO that restored SMN2 exon 7 inclusion by annealing to ISS-N1. Here, we analyzed the transcriptome of SMA patient cells treated with 100 nM of Anti-N1 for 30 h. Such concentrations are routinely used to demonstrate the efficacy of an ASO. While 100 nM of Anti-N1 substantially stimulated SMN2 exon 7 inclusion, it also caused massive perturbations in the transcriptome and triggered widespread aberrant splicing, affecting expression of essential genes associated with multiple cellular processes such as transcription, splicing, translation, cell signaling, cell cycle, macromolecular trafficking, cytoskeletal dynamics, and innate immunity. We validated our findings with quantitative and semiquantitative PCR of 39 candidate genes associated with diverse pathways. We also showed a substantial reduction in off-target effects with shorter ISS-N1-targeting ASOs. Our findings are significant for implementing better ASO design and dosing regimens of ASO-based drugs.


2018 ◽  
Author(s):  
A. Gregory Matera ◽  
Amanda C. Raimer ◽  
Casey A. Schmidt ◽  
Jo A. Kelly ◽  
Gaith N. Droby ◽  
...  

AbstractSpinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated the composition of the SMN complex in Drosophila melanogaster. Using a stable transgenic line that exclusively expresses Flag-tagged SMN from its native promoter, we previously found that Gemin2, Gemin3, Gemin5, and all nine classical Sm proteins, including Lsm10 and Lsm11, co-purify with SMN. Here, we show that CG2941 is also highly enriched in the pulldown. Reciprocal co-immunoprecipitation reveals that epitope-tagged CG2941 interacts with endogenous SMN in Schneider2 cells. Bioinformatic comparisons show that CG2941 shares sequence and structural similarity with metazoan Gemin4. Additional analysis shows that three other genes (CG14164, CG31950 and CG2371) are not orthologous to Gemins 6-7-8, respectively, as previously suggested. In D.melanogaster, CG2941 is located within an evolutionarily recent genomic triplication with two other nearly identical paralogous genes (CG32783 and CG32786). RNAi-mediated knockdown of CG2941 and its two close paralogs reveals that Gemin4 is essential for organismal viability.


Sign in / Sign up

Export Citation Format

Share Document