scholarly journals Hemin-Mediated Regulation of an Antioxidant-Responsive Element of the Human Ferritin H Gene and Role of Ref-1 during Erythroid Differentiation of K562 Cells

2006 ◽  
Vol 26 (7) ◽  
pp. 2845-2856 ◽  
Author(s):  
Kenta Iwasaki ◽  
Elizabeth L. MacKenzie ◽  
Kiros Hailemariam ◽  
Kensuke Sakamoto ◽  
Yoshiaki Tsuji

ABSTRACT An effective utilization of intracellular iron is a prerequisite for erythroid differentiation and hemoglobinization. Ferritin, consisting of 24 subunits of H and L, plays a crucial role in iron homeostasis. Here, we have found that the H subunit of the ferritin gene is activated at the transcriptional level during hemin-induced differentiation of K562 human erythroleukemic cells. Transfection of various 5′ regions of the human ferritin H gene fused to a luciferase reporter into K562 cells demonstrated that hemin activates ferritin H transcription through an antioxidant-responsive element (ARE) that is responsible for induction of a battery of phase II detoxification genes by oxidative stress. Gel retardation and chromatin immunoprecipitation assays demonstrated that hemin induced binding of cJun, JunD, FosB, and Nrf2 b-zip transcription factors to AP1 motifs of the ferritin H ARE, despite no significant change in expression levels or nuclear localization of these transcription factors. A Gal4-luciferase reporter assay did not show activation of these b-zip transcription factors after hemin treatment; however, redox factor 1 (Ref-1), which increases DNA binding of Jun/Fos family members via reduction of a conserved cysteine in their DNA binding domains, showed induced nuclear translocation after hemin treatment in K562 cells. Consistently, Ref-1 enhanced Nrf2 binding to the ARE and ferritin H transcription. Hemin also activated ARE sequences of other phase II genes, such as GSTpi and NQO1. Collectively, these results suggest that hemin activates the transcription of the ferritin H gene during K562 erythroid differentiation by Ref-1-mediated activation of these b-zip transcription factors to the ARE.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1749-1749
Author(s):  
Yogenthiran Saunthararajah ◽  
SiJun Yang ◽  
ShriHari Kadkol ◽  
Marie Baraoidan ◽  
Vinzon Ibanez ◽  
...  

Abstract CBFA2T3 (ETO2, MTG16), a target of chromosomal translocation in acute myeloid leukemia, has its highest expression in hematopoietic cells compared to other tissues. This suggests that its expression is regulated by major hematopoietic transcription factors. The proximal promoter from −171 to −65 bp has greater than 90% identity between mouse and human and contains recognition sites for major hematopoietic transcription factors PU.1, GATA-1 and GATA-2. Using chromatin immuno-precipitation and the MPD hematopoietic cell-line, this segment was pulled down with endogenous PU.1, GATA-1 and GATA-2. In luciferase reporter gene assays, PU.1 and GATA-2, but not GATA-1, activated the promoter. As would be expected from these findings, CBFA2T3 levels declined during terminal erythroid differentiation of primary hematopoietic cells. GATA-1, but not GATA-2, antagonized PU.1 mediated activation but this effect of GATA-1 was abrogated by mutation of the GATA DNA binding sites. Both GATA-1 and GATA-2 have been reported to antagonize PU.1 transcriptional activity by antagonizing PU.1 interactions with c-Jun (Zhang et al, Proc Natl Acad Sci USA1999;96:8705–8710); however, the DNA binding dependent mechanism reported here allows GATA-2 and GATA-1 to have contrasting relationships with PU.1 and may be the basis for the co-operation of GATA proteins with PU.1 in some contexts yet antagonism of PU.1 activity in others.


2009 ◽  
Vol 20 (6) ◽  
pp. 1606-1617 ◽  
Author(s):  
Kensuke Sakamoto ◽  
Kenta Iwasaki ◽  
Hiroyuki Sugiyama ◽  
Yoshiaki Tsuji

Coordinated regulation of PI3-kinase (PI3K) and the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) plays a pivotal role in various cell functions. PTEN is deficient in many cancer cells, including Jurkat human leukemia. Here, we demonstrate that the status of PTEN determines cellular susceptibility to oxidative stress through antioxidant-responsive element (ARE)-mediated transcription of detoxification genes. We found that ferritin H transcription was robustly induced in tert-butylhydroquinone (t-BHQ)-treated Jurkat cells via an ARE, and it was due to PTEN deficiency. Chromatin immunoprecipitation assays revealed that p300/CREB-binding protein (CBP) histone acetyltransferases and Nrf2 recruitment to the ARE and Bach1 release were blocked by the PI3K inhibitor LY294002, along with the partial inhibition of Nrf2 nuclear accumulation. Furthermore, acetylations of histone H3 Lys9 and Lys18, and deacetylation of Lys14 were associated with the PI3K-dependent ARE activation. Consistently, PTEN restoration in Jurkat cells inhibited t-BHQ–mediated expression of ferritin H and another ARE-regulated gene NAD(P)H:quinone oxidoreductase 1. Conversely, PTEN knockdown in K562 cells enhanced the response to t-BHQ. The PTEN status under t-BHQ treatment affected hydrogen peroxide-mediated caspase-3 cleavage. The PI3K-dependent ferritin H induction was observed by treatment with other ARE-activating agents ethoxyquin and hemin. Collectively, the status of PTEN determines chromatin modifications leading to ARE activation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1302-1302
Author(s):  
Chihiro Kaminaga ◽  
Shumpei Mizuta ◽  
Tomoya Minami ◽  
Kasumi Oda ◽  
Haruka Fujita ◽  
...  

Abstract Abstract 1302 The mammalian multi-protein complex Mediator, originally identified by ourselves as a nuclear receptor-specific coactivator complex, is a phylogenetically-conserved subcomplex of the RNA polymerase II holoenzyme and serves as an end-point integrator of diverse intracellular signals and transcriptional activators. The 220-kDa Mediator subunit MED1 is a specific coactivator not only for nuclear receptors but for GATA family activators, and serves as a GATA1-specific coactivator that is essential for optimal GATA1-mediated erythropoiesis. In this study, we show a novel nuclear signaling pathway for MED1 action in GATA1-induced transcriptional activation during erythroid differentiation. First, we identified the amino acid residues 681–715 of human MED1 (MED1(aa.681-715)) to be responsible for the direct interaction with GATA1. When MED1 in K562 human erythroleukemic cells was knocked down during hemin-induced erythroid differentiation, the erythroid differentiation was significantly attenuated as assessed by an erythroid differentiation score defined by the number of cells positive for benzidine staining, and the expressions of the GATA1-targeted and erythroid differentiation marker genes, β-globin, γ-globin, PBGD and ALAS-E, were prominently attenuated. However, overexpressions of the N-terminal MED1 truncations without and with nuclear receptor recognition motifs, MED1(aa.1–602) and MED1(aa.1–703), respectively, but neither of which could bind to GATA1 (above), prominently enhanced erythroid differentiation of K562 cells. Luciferase reporter assays by using the human γ-globin promoter and Med1−/− mouse embryonic fibroblasts (MEFs) showed that these N-terminal MED1 truncations rescued GATA1-mediated transactivation, indicating that MED1(a.a.1–602) served as the functional interaction surface for GATA1. Hence, a putative bypass for GATA1-MED1 pathway appears to exist, and is expected to interact with the N-terminus of MED1. As a candidate bypass system, we tested both the recently reported bypass molecule for a nuclear post-activator signaling, CCAR1, and its partner coactivator CoCoA. CCAR1 was reported by others to bypass the estrogen receptor-mediated transactivation by a simultaneous binding of CCAR1 with the estrogen receptor and the N-terminus of MED1. Functionally, serial luciferase reporter assays by using the γ-globin promoter and MEFs demonstrated cooperative transactivation by combinations of GATA1, CCAR1, CoCoA and/or the N-terminus of MED1, but the transactivation mediated by the N-terminus of MED1 was not as prominent as the one mediated by the full-length MED1. An overexperssion of CCAR1 or CoCoA in K562 cells prominently enhanced both the GATA1-mediated erythroid differentiation and the expressions of the GATA1-targeted genes. Next, the mechanisms underlying the CCAR1- and CoCoA-mediated GATA1 functions were analyzed by serial GST-pulldown and mammalian two-hybrid assays, and the following results were obtained. (i) The N-terminus of CCAR1 interacted with the C-terminus of CoCoA. (ii) The N-terminus of MED1 interacted with both the N- and C-termini of CCAR1. (iii) While the N-terminal zinc-finger domain of human GATA1 (GATA1(a.a.204–228)) is known to bind to the well-known GATA1 partner FOG1, intriguingly, the C-terminal zinc-finger domain of GATA1 (GATA1(a.a.258–272)) interacted with all three of the following cofactors; MED1 (MED1(aa.681–715)), CCAR1 (at the C-terminus) and CoCoA (at both the N- and C-termini). The affinity of CoCoA to bind to GATA1 appeared to be a little higher than the other. Thus, the GATA1(a.a.258-272) zinc finger appears to serve as a docking surface for multiple coactivating proteins, where both MED1 and CoCoA/CCAR1 pair can interact, probably in a competitive manner, or perhaps simultaneously. Here, both CoCoA/CCAR1 as a pair and CCAR1 by itself can serve as a bypass. Finally, ChIP assays of hemin-treated K562 cells showed that GATA1, CCAR1/CoCoA and MED1 were all recruited onto the γ-globin promoter during transactivation. Taken together, besides a direct interaction between GATA1 and MED1, the CoCoA/CCAR1 pair appears to relay the GATA1 signal to MED1. The multiple modes of mechanisms for transcription mediated by the GATA1-MED1 axis might contribute to a fine tuning of the GATA1 function, not only during erythropoiesis but also in other GATA1-mediated homeostasis events, within a living animal. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 511-511
Author(s):  
Yun Zhao ◽  
Wenjuan Ma ◽  
Xiuyan Zhang ◽  
Jiangxia Cui ◽  
Ivan Sloma ◽  
...  

Abstract TWIST is a basic helix-loop-helix transcription factor that specifies Drosophila mesoderm development. In mammals there are 2 members, TWIST1 and TWIST2. TWIST2 is a regulator of osteoblasts and muscle development and plays a critical role in the epithelial-mesenchymal transition process, as well as in cancer initiation and metastasis. Twist2-deficient mice develop a myeloproliferative disease. These findings led us to query a potential role of TWIST2 in normal and leukemic (CML) human hematopoietic cells. RT-PCR and immuno-fluorescence analysis of CD34+ bone marrow (BM) cells obtained from healthy donors demonstrated their expression of TWIST2 transcripts and protein. Lentiviral vector-mediated knockdown of TWIST2 with 2 independent shRNA sequences enhanced the erythroid and granulopoietic colony-forming activity of transduced normal BM cells ∼2-fold compared with control transduced cells (n=3, p<0.05). Interestingly, ChIP studies showed that TWIST2 can bind directly to the DNA promoter for ID2 in CD34-enriched BM cells and knockdown of TWIST2 reduced ID2 expression by 50%. In lin-CD34+ cells from 14 chronic myeloid leukemia (CML) patients, we found both TWIST2 and ID2 transcripts to be 5 and 6 fold lower than those from 6 healthy BM donors (p<0.05), with similar findings for TWIST2 and ID2 protein in the same cells. BCR-ABL1-transduced Baf/3 cells also showed a reduction in Twist2 expression. Conversely, TWIST2 expression became elevated when K562 cells were treated with Imatinib mesylate (IM). We then generated a lentiviral vector encoding TWIST2 which proved capable of inhibiting the growth of K562 and MEG-01 cells as well as CFC production from CML CD34+ cells (n=11, p<0.05). Overexpression of TWIST2 in MEG-01 cells also reduced their tumorigenic ability in subcutaneously injected nude mice (0/8 for TWIST2 group, 7/8 for control group). In addition, increased TWIST2 sensitized the IM response of K562 cells and IM-resistant CD34+ cells from CML patients (2 in chronic phase and 2 in blast crisis). Correspondingly, knockdown of TWIST2 in K562 cells enhanced their cloning efficiency by 15% and made them IM-resistant. To obtain further insight into these biological effects of TWIST2, we generated several TWIST2 mutant cDNAs, including ones with a N-terminal truncation (ΔN), a C-terminal truncation (ΔC), a F86P dimerization mutant and a b- DNA binding mutant. Analysis of the effects of these mutants when overexpressed in CML cells and cell lines showed TWIST2 dimer formation was critical for the effects obtained with wild-type TWIST2, whereas the DNA binding domain could modulate these effects but was not essential, and the N-terminal and C-terminal domains were dispensable. We also found that overexpression of TWIST2 enhanced ID2 expression in CML CD34+ cells (n=3), as well as K562 and MEG-01 cells, and ChIP analyses confirmed the binding of TWIST2 to ID2 promoter DNA from K562 and MEG-01 cells. Using ID2 promoter-driven luciferase reporter and a mutant derivative (with only the E-box sequence altered), we found that TWIST2 could activate the wild-type promoter but not the mutated one in both K562 and MEG-01 cells. Finally, we co-transduced CML cells from 3 patients with TWIST2 and shRNA against ID2 and found that this reversed the suppressed production of CFC obtained with TWIST2 alone. Similarly in K562 cells this treatment partially restored their growth rate and IM resistance. Taken together, we report a novel TWIST2-ID2 regulatory axis in normal hematopoietic progenitor cells, which can also modulate the growth and IM response of CML progenitor cells. These findings provide a baseline for the future development of more effective therapy of CML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3748-3748
Author(s):  
Ana Villegas ◽  
Fernando A. Gonzalez ◽  
Eduardo Anguita

Abstract Lineage specific transcription factors play essential roles in regulation of hematopoietic development. Transcription factor abnormalities have been frequently described in acute leukemia, mostly through cytogenetic changes. Nevertheless, point mutations can be easily missed. Recently, mutations in the erythroid and megakaryocyte specific transcription factor GATA1 have been discovered in patients with dyserythropoietic anemia and acute megakaryoblastic leukemia (AML-M7) with Down syndrome. Besides GATA-1, located on the X-chromosome, point mutations have been described in biallelic genes. This is the case of AML1 (RUNX1). PU1 and C/EBPalpha also represent examples of transcription factors in which point mutations are found in leukemia. A new zinc finger transcription factor involved in erythropoiesis is Gfi1b. Gfi1b was recently identified by sequence homology with oncogene Gfi1. Gfi1b knockout has demonstrated that this gene is essential for development of both erythroid and megakaryocytic lineages, and in its absence no enucleated erythrocytes are produced. Several Gfi1b DNA and protein targets (GATA1, Gfi1, AML1, p21WAF1, IL-6 Socs1 and Socs2) have been described that might be involved in malignancy. These findings indicate that Gfi1b is at the centre of hematopoiesis and may be a good candidate gene to be involved in hematological abnormalities. We have searched for Gfi1b point mutations in 122 patients with acute leukemia of all FAB types at diagnosis or relapse and 9 cases of congenital dyserythropoietic anemia. We have amplified Gfi1b promoter, coding and non-coding exons (Nucleic Acids Res2004;32:3935–46, MN 004188) by high fidelity PCR and screen for point mutations through dHPLC (Wave, Transgenomic) followed by sequencing of the cases with abnormal pattern. SNIPs in the promoter and exons were further confirmed in at least another PCR, cloned in pGEM-T easy vector system (Promega) and sequenced. Alleles with promoter SNIPs were cloned in pGL3-Enhancer vector (Promega), and transiently cotransfected with pEGFP-C2 (Clontech) to K562 cells. Luciferase activity was determined with Dual-Luciferase Reporter Assay (Promega). We found two promoter SNIPs in sequences conserved from chicken to human, one of them affecting a GATA-1 site, reducing promoter in vitro activity by 60 and 50% respectively. We also discovered a congenital exonic SNIP causing a mammalian conserved serine change to leucine. We excluded these to be frequent polymorphisms by dHPLC analysis of 96 blood donors. Although we cannot at present establish a clear relation between the former SNIPS and leukemia, we will discuss the presence of other milder hematological abnormalities. So far this is the first report of Gfi1b mutations that can be related to human pathology.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3443-3443
Author(s):  
AI Inoue ◽  
Tohru Fujiwara ◽  
Yoko Okitsu ◽  
Noriko Fukuhara ◽  
Yasushi Onishi ◽  
...  

Abstract Abstract 3443 Background: Developmental control mechanisms often utilize multimeric complexes containing transcription factors, coregulators, and additional non-DNA binding components. It is challenging to ascertain how such components contribute to complex function at endogenous loci. LMO2 (LIM-only protein 2) is a non-DNA binding transcriptional coregulator, and is an important regulator of hematopoietic stem cell development and erythropoiesis, as mice lacking this gene show defects in blood formation as well as fetal erythropoiesis (Warren et al. Cell. 1994). In the context of erythropoiesis, LMO2 has been demonstrated to be a part of multimetric complex, including master regulators of hematopoiesis (GATA-1 and SCL/TAL1), chromatin looping factor LDB1 and hematopoietic corepressor ETO2 (referred as GATA-SCL/TAL1 complex). As LMO2 controls hematopoiesis, its dysregulation is leukemogenic, and its influence on GATA factor function is still not evident, we investigated here the transcriptional regulatory mechanism via LMO2 in erythroid cells. Methods: For LMO2 knockdown, anti-LMO2 siRNA (Thermo Scientific Dharmacon) and pGIPZ lentiviral shRNAmir system (Open Biosystems) were used. Western blotting and Quantitative ChIP analysis were performed using antibodies for GATA-1, LMO2 (abcam), GATA-2, TAL1 and LDB1 (Santa Cruz). To obtain human primary erythroblasts, CD34-positive cells isolated from cord blood were induced in liquid suspension culture. For transcription profiling, human whole expression array was used (Agilent), and the data was analyzed with GeneSpring GX software. To induce erythroid differentiation of K562 cells, hemin was treated at a concentration of 30 uM for 24h. Results: siRNA-mediated LMO2 knockdown in hemin-treated K562 cells results in significantly decreased ratio of benzidine-staining positive cells, suggesting that LMO2 has an important role in the erythroid differentiation of K562 cells. Next, we conducted microarray analysis to characterize LMO2 target gene ensemble in K562 cells. In contrast to the predominantly repressive role of LMO2 in murine G1E-ER-GATA-1 cells (Fujiwara et al. PNAS. 2010), the analyses (n = 2) demonstrated that 177 and 78 genes were upregulated and downregulated (>1.5-fold), respectively, in the LMO2-knockdowned K562 cells. Downregulated gene ensemble contained prototypical erythroid genes such as HBB and SLC4A1 (encodes erythrocyte membrane protein band 3). To test what percentages of LMO2-regulated genes could be direct target genes of GATA-1 in K562 cells, we merged the microarray results with ChIP-seq profile (n= 5,749, Fujiwara et al. Mol Cell. 2009), and demonstrated that 26.4% and 23.1% of upregulated and downregulated genes, respectively, contained significant GATA-1 peaks in their loci. Furthermore, whereas LMO2 knockdown in K562 cells did not affect the expression of GATA-1, GATA-2 and SCL/TAL1 based on quantitative RT-PCR as well as Western blotting, the knockdown resulted in the significantly decreased chromatin occupancy of GATA-1, GATA-2, SCL/TAL1 and LDB1 at beta-globin locus control region and SLC4A1 locus. We subsequently analyzed the consequences of LMO2 knockdown in primary erythroblasts. Endogeneous LMO2 expression was upregulated along with the differentiation of cord blood cell-derived primary erythroblasts. shRNA-mediated knockdown of LMO2 in primary erythroblasts resulted in significant downregulation of HBB, HBA and SLC4A1. Conclusion: Our results suggest that LMO2 contributes to the expression of GATA-1 target genes in a context-dependent manner, through modulating the assembly of the components of GATA-SCL/TAL1 complex at endogeneous loci. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4730-4730
Author(s):  
Qian Xiong ◽  
Zhaojun Zhang ◽  
Hongzhu Qu ◽  
Xiuyan Ruan ◽  
Hai Wang ◽  
...  

Abstract Abstract 4730 Krüppel-like factors (KLFs) are a conserved family of Cys2His2 zinc finger proteins which are important components of eukaryotic cellular transcriptional machinery that controls many biological processes including erythroid differentiation and development. As a transcriptional activator and a tumor suppressor, KLF6 was also involved in hematopoiesis. Klf6−/− mice is embryonic lethal by embryonic day 12.5 and associated with markedly reduced hematopoiesis as well as poorly organized yolk sac vascularization. Moreover, the expression of erythroid differentiation markers including Klf1, Gata1 and Scl are delayed and hematopoietic differentiation is impaired in klf6−/− ES cells. However, the detailed mechanism that KLF6 regulates hematopoiesis is not fully understood. To characterize the role of KLF6 in hematopoiesis, we firstly detected the dynamic expression pattern of KLF6 during erythroid differentiation by mRNA-seq in undifferentiated human embryonic stem cells (hESC), three primary erythroid cells at different developmental stages including ES-derived erythroid cells (ESER), fetal- and adult-type erythroid cells (FLER, PBER). The transcriptome analysis showed that KLF6 expressed at significantly higher level in ESER cells compared with that in other cells. Meanwhile, chromatin immunoprecipitation (ChIP) studies in human K562 cells demonstrated the enrichment of KLF6 on the promoter region of embryonic epsilon-globin gene. These results probably indicate that KLF6 play an important role in primitive hematopoiesis. To clarify whether the erythroid-specific enhancers in the genomic region of KLF6 participate in the regulation of primitive hematopoiesis, we extensively screened the erythroid-specific DNaseI hypersensitive sites (DHSs) in the KLF6 locus, from 70 kb upstream of the transcription start site to 20 kb downstream of the poly(A) site, from DNase-seq data in four erythroid cells including ESER, FLER, PBER, K562 and seven non-erythroid cells. The enhancer activity of these erythroid-specific DHSs was comprehensively characterized by dual-luciferase reporter assay in K562 cells as well as non-erythroid HeLa and HEK293 cells. Three erythroid-specific enhancers located 18–24 kb upstream of human KLF6 were finally characterized, which not only helps to understand the higher expression of KLF6 in ESER, but also hints that KLF6 could participate in primitive hematopoiesis through erythroid-specific enhancers. In conclusion, we depicted the dynamic expression pattern of KLF6 during erythroid differentiation, characterized three erythroid-specific enhancers in KLF6 gene locus, and disclosed the potential role of KLF6 in primitive hematopoiesis. Next, the overexpression and depletion of KLF6 in K562 cells will be executed to further explore whether the abnormal KLF6 will affect the expression and functions of globin genes as well as erythroid-specific transcription factors. Chromosome conformation capture (3C) analysis will be performed to evaluate the interactions between the erythroid-specific enhancers and the cis-regulatory elements of hematopoiesis related genes. Moreover, we will establish morpholino-based klf6 knockdown zebrafish model and study the target genes, interacting networks and pathways in which KLF6 involved. Collectively, these results will address the detailed cis- and trans- regulatory functions and molecular mechanism of KLF6 in regulating hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 399 (8) ◽  
pp. 881-893 ◽  
Author(s):  
Gavin Morris ◽  
Stoyan Stoychev ◽  
Previn Naicker ◽  
Heini W. Dirr ◽  
Sylvia Fanucchi

Abstract Forkhead box (FOX) proteins are a ubiquitously expressed family of transcription factors that regulate the development and differentiation of a wide range of tissues in animals. The FOXP subfamily members are the only known FOX proteins capable of forming domain-swapped forkhead domain (FHD) dimers. This is proposed to be due to an evolutionary mutation (P539A) that lies in the FHD hinge loop, a key region thought to fine-tune DNA sequence specificity in the FOX transcription factors. Considering the importance of the hinge loop in both the dimerisation mechanism of the FOXP FHD and its role in tuning DNA binding, a detailed investigation into the implications of mutations within this region could provide important insight into the evolution of the FOX family. Isothermal titration calorimetry and hydrogen exchange mass spectroscopy were used to study the thermodynamic binding signature and changes in backbone dynamics of FOXP2 FHD DNA binding. Dual luciferase reporter assays were performed to study the effect that the hinge-loop mutation has on FOXP2 transcriptional activity in vivo. We demonstrate that the change in dynamics of the hinge-loop region of FOXP2 alters the energetics and mechanism of DNA binding highlighting the critical role of hinge loop mutations in regulating DNA binding characteristics of the FOX proteins.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3386-3386
Author(s):  
Elisa Bianchi ◽  
Paola Guglielmelli ◽  
Lorenzo Tozzi ◽  
Costanza Bogani ◽  
Simona Salati ◽  
...  

Abstract Abstract 3386 Deregulated expression of miRNAs is associated with neoplasia. We recently showed that miR-16-2 is overexpressed in CD34(+) cells of patients with polycythemia vera (PV) versus their normal counterparts and that deregulation of miR-16-2 contributes, in a way independent of JAK/STAT pathway activation, to the abnormal expansion of the erythroid lineage characterizing PV. In fact, forced expression of miR-16 in normal CD34+ cells stimulated erythroid maturation while exposure of PV CD34(+) cells to antagomirs against pre-miR-16-2 reduced erythroid colonies. Moreover, erythroid fate was impaired in mice injected with a miR-16 antagomir, indicating a role of miR-16 in normal erythropoiesis. Collectively these data identified miR-16-2 as a positive regulator of the erythropoiesis and linked the abnormal expansion toward the erythroid lineage to the overexpression of miR-16-2 in PV patients (Guglielmelli P, Blood, 117:6923–6927, 2011). However, the mechanisms underlying miR-16-2 overexpression are still unknown. In this project we aim to identify the transcription factors regulating miR-16-2 expression in normal and PV erythropoiesis. miR-16-2 is an intronic miRNA located within the SMC4 (Structural Maintenance of Chromosome 4) gene on chromosome 3. A functionally defined promoter of miR-16 has not been characterized yet. Therefore, (1) based on data from genome-wide studies of H3K4me3, H3K9/14Ac, RNA pol II-enrichment and nucleosome positioning identifying a RNA pol II-enriched region overlapping the SMC4 promoter for miR16-2 expression control and (2) based on the evidence of a correlation between the expression levels of this intronic miRNA and those of its host gene SMC4, we focused our attention on the transcriptional regulators of SMC4 gene. We screened the SMC4 gene promoter region in order to identify putative binding sites for transcription factors already known to be involved in erythroid differentiation, such as c-myb, KLF1 and GATA1. Next, we cloned the SMC4 promoter region between ∼20 bp downstream and 1200 bp upstream the Transcription Start Site into the pXP1 plasmid, upstream to the promoterless firefly luciferase reporter gene. HEK293T cells were transfected with the pXP1 vector carrying the Luciferase reporter gene under the SMC4 promoter control and increasing amounts of plasmid coding for either c-myb or KLF1. Luciferase activity measurements were done in duplicate and signals were normalized for transfection efficiency to the internal Renilla control. At least 3 independent experiments were performed for each of the transcription factors tested. Our data demonstrated that increasing levels of c-myb protein expression are able to transactivate SMC4 promoter-driven luciferase expression. In fact, increasing amounts of the c-myb-coding plasmid determined a dose-dependent increase in SMC4 promoter-driven luciferase activity (735+/−196, 995+/−286 and 1759+/−474 for 100, 200 and 400ng of c-myb-coding plasmid respectively, versus 590+/−190 for the empty plasmid control; average+/−SD values). Therefore, the c-myb-driven SMC4 promoter transactivation trend identified (P<0.01 in myb-coding versus empty vector transfected samples) points out the potential involvement of c-myb in SMC4/miR-16-2 upregulation during normal and/or pathologic erythroid differentiation. On the contrary, increasing levels of KLF1 expression failed to affect SMC4 promoter-driven luciferase gene expression, suggesting that a role for KLF1 in this process could be ruled out. Further experiments will elucidate the role of GATA1 in this process. In conclusion, our data demonstrated that c-myb is able to transactivate SMC4/miR16-2 expression, by shedding for the first time some light on the molecular players involved in normal and PV erythropoiesis. Despite the overwhelming body of studies demonstrating the key role of c-myb in the erythropoiesis, little is known on the molecular mechanisms of c-myb-driven erythroid differentiation. We recently gained insights in this process by demonstrating that c-myb supports erythropoiesis by transactivating KLF1 and LMO2 expression (Bianchi E, Blood, 116:e99–110, 2010). The present data suggest SMC4/miR16 transactivation as a new pathway through which c-myb affects the erythroid differentiation. However, further studies need to be performed to more deeply unravel this mechanism and its relevance in normal and PV erythropoiesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document