GATA-1, but Not GATA-2, Antagonizes PU.1 Mediated Transcriptional Activity at the CBFA2T3 (ETO2, MTG16) Promoter through a Mechanism Dependent on GATA DNA Binding.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1749-1749
Author(s):  
Yogenthiran Saunthararajah ◽  
SiJun Yang ◽  
ShriHari Kadkol ◽  
Marie Baraoidan ◽  
Vinzon Ibanez ◽  
...  

Abstract CBFA2T3 (ETO2, MTG16), a target of chromosomal translocation in acute myeloid leukemia, has its highest expression in hematopoietic cells compared to other tissues. This suggests that its expression is regulated by major hematopoietic transcription factors. The proximal promoter from −171 to −65 bp has greater than 90% identity between mouse and human and contains recognition sites for major hematopoietic transcription factors PU.1, GATA-1 and GATA-2. Using chromatin immuno-precipitation and the MPD hematopoietic cell-line, this segment was pulled down with endogenous PU.1, GATA-1 and GATA-2. In luciferase reporter gene assays, PU.1 and GATA-2, but not GATA-1, activated the promoter. As would be expected from these findings, CBFA2T3 levels declined during terminal erythroid differentiation of primary hematopoietic cells. GATA-1, but not GATA-2, antagonized PU.1 mediated activation but this effect of GATA-1 was abrogated by mutation of the GATA DNA binding sites. Both GATA-1 and GATA-2 have been reported to antagonize PU.1 transcriptional activity by antagonizing PU.1 interactions with c-Jun (Zhang et al, Proc Natl Acad Sci USA1999;96:8705–8710); however, the DNA binding dependent mechanism reported here allows GATA-2 and GATA-1 to have contrasting relationships with PU.1 and may be the basis for the co-operation of GATA proteins with PU.1 in some contexts yet antagonism of PU.1 activity in others.

2006 ◽  
Vol 26 (7) ◽  
pp. 2845-2856 ◽  
Author(s):  
Kenta Iwasaki ◽  
Elizabeth L. MacKenzie ◽  
Kiros Hailemariam ◽  
Kensuke Sakamoto ◽  
Yoshiaki Tsuji

ABSTRACT An effective utilization of intracellular iron is a prerequisite for erythroid differentiation and hemoglobinization. Ferritin, consisting of 24 subunits of H and L, plays a crucial role in iron homeostasis. Here, we have found that the H subunit of the ferritin gene is activated at the transcriptional level during hemin-induced differentiation of K562 human erythroleukemic cells. Transfection of various 5′ regions of the human ferritin H gene fused to a luciferase reporter into K562 cells demonstrated that hemin activates ferritin H transcription through an antioxidant-responsive element (ARE) that is responsible for induction of a battery of phase II detoxification genes by oxidative stress. Gel retardation and chromatin immunoprecipitation assays demonstrated that hemin induced binding of cJun, JunD, FosB, and Nrf2 b-zip transcription factors to AP1 motifs of the ferritin H ARE, despite no significant change in expression levels or nuclear localization of these transcription factors. A Gal4-luciferase reporter assay did not show activation of these b-zip transcription factors after hemin treatment; however, redox factor 1 (Ref-1), which increases DNA binding of Jun/Fos family members via reduction of a conserved cysteine in their DNA binding domains, showed induced nuclear translocation after hemin treatment in K562 cells. Consistently, Ref-1 enhanced Nrf2 binding to the ARE and ferritin H transcription. Hemin also activated ARE sequences of other phase II genes, such as GSTpi and NQO1. Collectively, these results suggest that hemin activates the transcription of the ferritin H gene during K562 erythroid differentiation by Ref-1-mediated activation of these b-zip transcription factors to the ARE.


2006 ◽  
Vol 399 (2) ◽  
pp. 297-304 ◽  
Author(s):  
Zhixiong Xu ◽  
Xianzhang Meng ◽  
Ying Cai ◽  
Mark J. Koury ◽  
Stephen J. Brandt

SWI/SNF complexes are involved in both activation and repression of transcription. While one of two homologous ATPases, Brg1 [Brm (Brahma)-related gene 1] or Brm, is required for their chromatin remodelling function, less is known about how these complexes are recruited to DNA. We recently established that a DNA-binding complex containing TAL1/SCL, E47, GATA-1, LMO2 and Ldb1 stimulates P4.2 (protein 4.2) transcription in erythroid progenitors via two E box–GATA elements in the gene's proximal promoter. We show here that the SWI/SNF protein Brg1 is also associated with this complex and that both the E box and GATA DNA-binding sites in these elements are required for Brg1 recruitment. Further, Brg1 occupancy of the P4.2 promoter decreased with terminal erythroid differentiation in association with increased P4.2 transcription, while enforced expression of Brg1 in murine erythroleukaemia cells reduced P4.2 gene expression. Overexpression of Brg1 was associated with increased occupancy of the P4.2 promoter by the nuclear co-repressor mSin3A and HDAC2 (histone deacetylase 2) and with reduced histone H3 and H4 acetylation. Finally, a specific HDAC inhibitor attenuated Brg1-directed repression of P4.2 promoter activity in transfected cells. These results provide insight into the mechanism by which SWI/SNF proteins are recruited to promoters and suggest that transcription of P4.2, and most likely other genes, is actively repressed until the terminal differentiation of erythroid progenitors.


2018 ◽  
Vol 399 (8) ◽  
pp. 881-893 ◽  
Author(s):  
Gavin Morris ◽  
Stoyan Stoychev ◽  
Previn Naicker ◽  
Heini W. Dirr ◽  
Sylvia Fanucchi

Abstract Forkhead box (FOX) proteins are a ubiquitously expressed family of transcription factors that regulate the development and differentiation of a wide range of tissues in animals. The FOXP subfamily members are the only known FOX proteins capable of forming domain-swapped forkhead domain (FHD) dimers. This is proposed to be due to an evolutionary mutation (P539A) that lies in the FHD hinge loop, a key region thought to fine-tune DNA sequence specificity in the FOX transcription factors. Considering the importance of the hinge loop in both the dimerisation mechanism of the FOXP FHD and its role in tuning DNA binding, a detailed investigation into the implications of mutations within this region could provide important insight into the evolution of the FOX family. Isothermal titration calorimetry and hydrogen exchange mass spectroscopy were used to study the thermodynamic binding signature and changes in backbone dynamics of FOXP2 FHD DNA binding. Dual luciferase reporter assays were performed to study the effect that the hinge-loop mutation has on FOXP2 transcriptional activity in vivo. We demonstrate that the change in dynamics of the hinge-loop region of FOXP2 alters the energetics and mechanism of DNA binding highlighting the critical role of hinge loop mutations in regulating DNA binding characteristics of the FOX proteins.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3386-3386
Author(s):  
Elisa Bianchi ◽  
Paola Guglielmelli ◽  
Lorenzo Tozzi ◽  
Costanza Bogani ◽  
Simona Salati ◽  
...  

Abstract Abstract 3386 Deregulated expression of miRNAs is associated with neoplasia. We recently showed that miR-16-2 is overexpressed in CD34(+) cells of patients with polycythemia vera (PV) versus their normal counterparts and that deregulation of miR-16-2 contributes, in a way independent of JAK/STAT pathway activation, to the abnormal expansion of the erythroid lineage characterizing PV. In fact, forced expression of miR-16 in normal CD34+ cells stimulated erythroid maturation while exposure of PV CD34(+) cells to antagomirs against pre-miR-16-2 reduced erythroid colonies. Moreover, erythroid fate was impaired in mice injected with a miR-16 antagomir, indicating a role of miR-16 in normal erythropoiesis. Collectively these data identified miR-16-2 as a positive regulator of the erythropoiesis and linked the abnormal expansion toward the erythroid lineage to the overexpression of miR-16-2 in PV patients (Guglielmelli P, Blood, 117:6923–6927, 2011). However, the mechanisms underlying miR-16-2 overexpression are still unknown. In this project we aim to identify the transcription factors regulating miR-16-2 expression in normal and PV erythropoiesis. miR-16-2 is an intronic miRNA located within the SMC4 (Structural Maintenance of Chromosome 4) gene on chromosome 3. A functionally defined promoter of miR-16 has not been characterized yet. Therefore, (1) based on data from genome-wide studies of H3K4me3, H3K9/14Ac, RNA pol II-enrichment and nucleosome positioning identifying a RNA pol II-enriched region overlapping the SMC4 promoter for miR16-2 expression control and (2) based on the evidence of a correlation between the expression levels of this intronic miRNA and those of its host gene SMC4, we focused our attention on the transcriptional regulators of SMC4 gene. We screened the SMC4 gene promoter region in order to identify putative binding sites for transcription factors already known to be involved in erythroid differentiation, such as c-myb, KLF1 and GATA1. Next, we cloned the SMC4 promoter region between ∼20 bp downstream and 1200 bp upstream the Transcription Start Site into the pXP1 plasmid, upstream to the promoterless firefly luciferase reporter gene. HEK293T cells were transfected with the pXP1 vector carrying the Luciferase reporter gene under the SMC4 promoter control and increasing amounts of plasmid coding for either c-myb or KLF1. Luciferase activity measurements were done in duplicate and signals were normalized for transfection efficiency to the internal Renilla control. At least 3 independent experiments were performed for each of the transcription factors tested. Our data demonstrated that increasing levels of c-myb protein expression are able to transactivate SMC4 promoter-driven luciferase expression. In fact, increasing amounts of the c-myb-coding plasmid determined a dose-dependent increase in SMC4 promoter-driven luciferase activity (735+/−196, 995+/−286 and 1759+/−474 for 100, 200 and 400ng of c-myb-coding plasmid respectively, versus 590+/−190 for the empty plasmid control; average+/−SD values). Therefore, the c-myb-driven SMC4 promoter transactivation trend identified (P<0.01 in myb-coding versus empty vector transfected samples) points out the potential involvement of c-myb in SMC4/miR-16-2 upregulation during normal and/or pathologic erythroid differentiation. On the contrary, increasing levels of KLF1 expression failed to affect SMC4 promoter-driven luciferase gene expression, suggesting that a role for KLF1 in this process could be ruled out. Further experiments will elucidate the role of GATA1 in this process. In conclusion, our data demonstrated that c-myb is able to transactivate SMC4/miR16-2 expression, by shedding for the first time some light on the molecular players involved in normal and PV erythropoiesis. Despite the overwhelming body of studies demonstrating the key role of c-myb in the erythropoiesis, little is known on the molecular mechanisms of c-myb-driven erythroid differentiation. We recently gained insights in this process by demonstrating that c-myb supports erythropoiesis by transactivating KLF1 and LMO2 expression (Bianchi E, Blood, 116:e99–110, 2010). The present data suggest SMC4/miR16 transactivation as a new pathway through which c-myb affects the erythroid differentiation. However, further studies need to be performed to more deeply unravel this mechanism and its relevance in normal and PV erythropoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2402-2402
Author(s):  
Fumihiko Mouri ◽  
Junichi Tsukada ◽  
Akiyoshi Fukamizu ◽  
Yoshiya Tanaka

Abstract PU.1, a member of the Ets family transcription factors, is expressed restrictively in hematopoietic cells including monocytes and macrophages, and plays critical roles in the inflammatory responses and the development of hematopoietic cells. CREB-binding protein (CBP) regulates transcription by acetylating not only histones but also certain transcription factors. Here, we demonstrated that a specific inhibitor of histone deacetylases, trichostatin A (TSA) inhibits PU.1 transcriptional activity in monocytes and further showed that deletion of a histone acetyltransferase (HAT) domain of CBP resulted in synergistic cooperativity between CBP and PU.1. When human monocytic cells THP-1 were treated with TSA, our immunoprecipitaion and western blot assay showed that TSA enhanced PU.1 acetylation. Next, we investigated the effect of TSA on the transcriptional regulation of PU.1-dependent gene promoters such as the human prointerleukin 1β (IL1B) gene and the human granulocyte-macrophage colony-stimulating factor receptor α (GM-CSFRα) gene in transient transfection studies. Two distinct luciferase reporter plasmids (Luc) for the IL1B gene promoter and the GM-CSFRα gene promoter, IL1B-Luc and GM-CSFRα-Luc were used. When these plasmids were transiently transfected into THP-1 cells, TSA suppressed LPS-induced activities for the IL1B promoter and the GM-CSFRα promoter in a dose-dependent manner. In contrast, when NF-κB luciferase reporter, NF-κB-Luc was transfected into THP-1 cells, TSA synergistically increased LPS-induced NF-κB activities. Moreover, when a PU.1 expression vector, pECEPU.1 was cotransfected into PU.1-deficient murine thymocytes EL4 along with either IL1B-Luc or GM-CSFRα-Luc. The PU.1-induced promoter activities were strongly suppressed through TSA treatment. FACS analysis further indicated that TSA suppressed LPS-induced expression of IL-1β and GM-CSFRα proteins. In addition, our EMSA data showed that TSA treatment did not affect DNA binding activity of PU.1 to the IL1B promoter. PU.1 has been shown to interact physically with CBP to transactivate their target genes. In our study, expression vectors for CBP wild-type or with a deletion of its HAT domain was cotransfected into EL4 cells along with IL1B-Luc and pECEPU.1. The HAT activity-deficient mutant showed synergistic transcriptional activity with PU.1 more strongly than the wild-type CBP. In this regard, our GST-pulldown assay showed that deletion of CBP HAT domain did not change binding affinity of CBP for PU.1. Our results propose a novel molecular mechanism by which PU.1-dependent genes is negatively regulated by HAT-induced acetylation in monocytes.


2005 ◽  
Vol 288 (5) ◽  
pp. F899-F909 ◽  
Author(s):  
Zubaida Saifudeen ◽  
Susana Dipp ◽  
Hao Fan ◽  
Samir S. El-Dahr

Despite a wealth of knowledge regarding the early steps of epithelial differentiation, little is known about the mechanisms responsible for terminal nephron differentiation. The bradykinin B2 receptor (B2R) regulates renal function and integrity, and its expression is induced during terminal nephron differentiation. This study investigates the transcriptional regulation of the B2R during kidney development. The rat B2R 5′-flanking region has a highly conserved cis-acting enhancer in the proximal promoter consisting of contiguous binding sites for the transcription factors cAMP response element binding protein (CREB), p53, and Krüppel-like factor (KLF-4). The B2R enhancer drives reporter gene expression in inner medullary collecting duct-3 cells but is considerably weaker in other cell types. Site-directed mutagenesis and expression of dominant negative mutants demonstrated the requirement of CREB DNA binding and Ser-133 phosphorylation for optimal enhancer function. Moreover, helical phasing experiments showed that disruption of the spatial organization of the enhancer inhibits B2R promoter activity. Several lines of evidence indicate that cooperative interactions among the three transcription factors occur in vivo during terminal nephron differentiation: 1) CREB, p53, and KLF-4 are coexpressed in B2R-positive differentiating cells; 2) the maturational expression of B2R correlates with CREB/p53/KLF-4 DNA-binding activity; 3) assembly of CREB, p53, and KLF-4 on chromatin at the endogenous B2R promoter is developmentally regulated and is accompanied by CBP recruitment and histone hyperacetylation; and 4) CREB and p53 occupancy of the B2R enhancer is cooperative. These results demonstrate that combinatorial interactions among the transcription factors, CREB, p53, and KLF-4, and the coactivator CBP, may be critical for the regulation of B2R gene expression during terminal nephron differentiation.


1999 ◽  
Vol 276 (4) ◽  
pp. C883-C891 ◽  
Author(s):  
Carola E. Wright ◽  
F. Haddad ◽  
A. X. Qin ◽  
P. W. Bodell ◽  
K. M. Baldwin

Cardiac β-myosin heavy chain (β-MHC) gene expression is mainly regulated through transcriptional processes. Although these results are based primarily on in vitro cell culture models, relatively little information is available concerning the interaction of key regulatory factors thought to modulate MHC expression in the intact rodent heart. Using a direct gene transfer approach, we studied the in vivo transcriptional activity of different-length β-MHC promoter fragments in normal control and in altered thyroid states. The test β-MHC promoter was fused to a firefly luciferase reporter gene, whereas the control α-MHC promoter was fused to the Renilla luciferase reporter gene and was used to account for variations in transfection efficiency. Absolute reporter gene activities showed that β- and α-MHC genes were individually and reciprocally regulated by thyroid hormone. The β-to-α ratios of reporter gene expression demonstrated an almost threefold larger β-MHC gene expression in the longest than in the shorter promoter fragments in normal control animals, implying the existence of an upstream enhancer. A mutation in the putative thyroid response element of the −408-bp β-MHC promoter construct caused transcriptional activity to drop to null. When studied in the −3,500-bp β-MHC promoter, construct activity was reduced (∼100-fold) while thyroid hormone responsiveness was retained. These findings suggest that, even though the bulk of the thyroid hormone responsiveness of the gene is contained within the first 215 bp of the β-MHC promoter sequence, the exact mechanism of triiodothyronine (T3) action remains to be elucidated.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Guoping Cao ◽  
Shenglan Gong ◽  
Fengxue Zhang ◽  
Wenjun Fu

Previous studies have revealed that uncontrollable stress can impair the synaptic plasticity and firing property of hippocampal neurons, which influenced various hippocampal-dependent tasks including memory, cognition, behavior, and mood. In this work, we had investigated the effects and mechanisms of the Chinese herbal medicine Xiao Yao San (XYS) against corticosterone-induced stress injury in primary hippocampal neurons (PHN) cells. We found that XYS and RU38486 could increase cell viabilities and decrease cell apoptosis by MTT, immunofluorescence, and flow cytometry assays. In addition, we observed that XYS notably inhibited the nuclear translocation of GR and upregulated the mRNA and protein expressions levels of Caveolin-1, GR, BDNF, TrkB, and FKBP4. However, XYS downregulated the FKBP51 expressions. Furthermore, the results of the electrophoretic mobility shift assay (EMSA) and double luciferase reporter gene detection indicated that FKBP4 promotes the transcriptional activity of GR reaction element (GRE) by binding with GR, and FKBP51 processed the opposite action. Thein vivoexperiment also proved the functions of XYS. These results suggested that XYS showed an efficient neuroprotection against corticosterone-induced stress injury in PHN cells by upregulating GRE transcriptional activity, which should be developed as a potential candidate for treating stress injury in the future.


1996 ◽  
Vol 317 (2) ◽  
pp. 621-625 ◽  
Author(s):  
Michael W. VOICE ◽  
Jonathan R. SECKL ◽  
Christopher R. W. EDWARDS ◽  
Karen E. CHAPMAN

11β-Hydroxysteroid dehydrogenase (11β-HSD) is a key enzyme in glucocorticoid metabolism, catalysing the conversion of active glucocorticoids into their inactive 11-keto metabolites, thus regulating glucocorticoid access to intracellular receptors. The type 1 isoform (11β-HSD 1) (EC 1.1.1.146) is widely distributed, with particularly high levels in liver, where accumulating evidence suggests that it acts as an 11β-reductase, regenerating active glucocorticoids. Investigation of the function and regulation of 11β-HSD 1 in liver has been hampered by the lack of hepatic cell lines which express 11β-HSD 1. Here, we describe 11β-HSD 1 mRNA expression and activity in 2S FAZA cells, a continuously cultured rat liver cell line. In intact 2S FAZA cells 11β-HSD 1 acts predominantly as a reductase, with very low dehydrogenase activity. In 2S FAZA cells 11β-HSD 1 activity and mRNA expression are regulated by hormones, with dexamethasone increasing activity and insulin, forskolin and insulin-like growth factor 1 decreasing it. Transfection of 2S FAZA cells with a luciferase reporter gene driven by the proximal promoter of the rat 11β-HSD 1 gene demonstrates that sequences which can mediate the responses to insulin, dexamethasone and forskolin all lie within 1800 bp of the transcription start site.


1997 ◽  
Vol 17 (3) ◽  
pp. 1314-1323 ◽  
Author(s):  
E Parra ◽  
M Varga ◽  
G Hedlund ◽  
T Kalland ◽  
M Dohlsten

We have characterized the regulation of nuclear factors involved in transcriptional control of the interleukin-2 (IL-2) promoter-enhancer activity in Jurkat T cells stimulated with superantigen presented on HLA-DR transfectants combined with the ligands LFA-3 (CD58) and B7-1 (CD80). Gel shift analyses showed that NF-AT was strongly induced in LFA-3-costimulated Jurkat T cells, suggesting that NF-AT is a key target nuclear factor for the CD2-LFA-3 pathway. Studies using HLA-DR-B7-1-LFA-3 triple transfectants showed that the LFA-3-induced NF-AT DNA binding activity was negatively regulated by B7-1 costimulation. In contrast, induction of a CD28 response complex containing only c-Rel proteins was seen after B7-1 costimulation. Both LFA-3 costimulation and B7-1 costimulation induced the AP-1 and NF-kappaB nuclear factors. Distinct compositions of the NF-AT complexes were seen in B7-1- and LFA-3-costimulated cells. LFA-3 induced primarily Jun-D, Fra-1, and Fra-2, while B7-1 induced June-D-Fos complexes. In contrast, AP-1 and NF-kappaB complexes induced in B7-1- and LFA-3-costimulated T cells showed similar contents. Transient transfection of Jurkat T cells with a construct encoding the IL-2 enhancer-promoter region (position -500 to +60) linked to a luciferase reporter gene revealed that B7-1 costimulation was required to induce strong transcriptional activity. Combined B7-1-LFA-3 costimulation resulted in a synergistic increase in IL-2 transcriptional activity. Multimers of the AP-1, NF-AT, NF-kappaB, and CD28 response elements showed distinct kinetics and activity after LFA-3 and B7-1 costimulation and revealed that B7-1 and LFA-3 converge to superinduce transcriptional activity of the AP-1, NF-AT, and CD28 response elements. Transcriptional studies with an IL-2 enhancer-promoter carrying a mutation in the CD28 response element site revealed that the activity was reduced by 80% after B7-1 and B7-1-LFA-3 costimulation whereas the transcriptional activity induced by LFA-3 was unaffected. Our data strongly suggest a selectivity in induction of nuclear factors by the CD2-LFA-3 and CD28-B7-1 pathways. This selectivity may contribute to regulation of the levels of IL-2 induced by LFA-3 and B7-1 costimulation and favor autocrine and paracrine T-cell responses, respectively.


Sign in / Sign up

Export Citation Format

Share Document