scholarly journals Expression of a novel high-affinity purine nucleobase transport function in mutant mammalian T lymphoblasts.

1986 ◽  
Vol 6 (8) ◽  
pp. 2957-2962 ◽  
Author(s):  
B Aronow ◽  
D Toll ◽  
J Patrick ◽  
P Hollingsworth ◽  
K McCartan ◽  
...  

The single nucleoside transport function of mouse S49 lymphoblasts also transports purine bases (B. Aronow and B. Ullman, J. Biol. Chem. 261:2014-2019, 1986). This transport of purine bases by S49 cells is sensitive to inhibition by dipyridamole (DPA) and 4-nitrobenzylthioinosine, two potent inhibitors of nucleoside transport. Therefore, wild-type S49 cells cannot salvage low hypoxanthine concentrations in the presence of 10 microM DPA and 11 microM azaserine; the latter is a potent inhibitor of purine biosynthesis. Among a mutagenized wild-type population, a cell line, JPA2, was isolated which could proliferate in 50 microM hypoxanthine-11 microM azaserine-10 microM DPA. The basis for the survival of JPA2 cells under these selective conditions was expression of a unique, high-affinity purine nucleobase transport function not present in wild-type cells. JPA2 cells could transport 5 microM concentrations of hypoxanthine, guanine, and adenine 15- to 30-fold more efficiently than parental cells did. Kinetic analyses revealed that the affinity of the JPA2 transporter for all three purine bases was much greater than that of the wild-type nucleobase transport system. Moreover, nucleobase transport in JPA2 cells, unlike that in parental cells, was insensitive to inhibition by DPA, 4-nitrobenzylthioinosine, sulfhydryl reagents, and nucleosides. No alterations in nucleoside transport capability, phosphoribosylpyrophosphate levels, or purine phosphoribosyltransferase enzymes were detected in JPA2 cells. Thus, JPA2 cells express a novel nucleobase transport capability which can be distinguished from the nucleoside transport function by multiple biochemical parameters.

1986 ◽  
Vol 6 (8) ◽  
pp. 2957-2962
Author(s):  
B Aronow ◽  
D Toll ◽  
J Patrick ◽  
P Hollingsworth ◽  
K McCartan ◽  
...  

The single nucleoside transport function of mouse S49 lymphoblasts also transports purine bases (B. Aronow and B. Ullman, J. Biol. Chem. 261:2014-2019, 1986). This transport of purine bases by S49 cells is sensitive to inhibition by dipyridamole (DPA) and 4-nitrobenzylthioinosine, two potent inhibitors of nucleoside transport. Therefore, wild-type S49 cells cannot salvage low hypoxanthine concentrations in the presence of 10 microM DPA and 11 microM azaserine; the latter is a potent inhibitor of purine biosynthesis. Among a mutagenized wild-type population, a cell line, JPA2, was isolated which could proliferate in 50 microM hypoxanthine-11 microM azaserine-10 microM DPA. The basis for the survival of JPA2 cells under these selective conditions was expression of a unique, high-affinity purine nucleobase transport function not present in wild-type cells. JPA2 cells could transport 5 microM concentrations of hypoxanthine, guanine, and adenine 15- to 30-fold more efficiently than parental cells did. Kinetic analyses revealed that the affinity of the JPA2 transporter for all three purine bases was much greater than that of the wild-type nucleobase transport system. Moreover, nucleobase transport in JPA2 cells, unlike that in parental cells, was insensitive to inhibition by DPA, 4-nitrobenzylthioinosine, sulfhydryl reagents, and nucleosides. No alterations in nucleoside transport capability, phosphoribosylpyrophosphate levels, or purine phosphoribosyltransferase enzymes were detected in JPA2 cells. Thus, JPA2 cells express a novel nucleobase transport capability which can be distinguished from the nucleoside transport function by multiple biochemical parameters.


1987 ◽  
Vol 7 (1) ◽  
pp. 97-103
Author(s):  
B Ullman ◽  
J Patrick ◽  
K McCartan

A novel type of somatic mutation that causes the expression of a high-affinity purine base permease (B. Aronow, D. Toll, J. Patrick, P. Hollingsworth, K. McCartan, and B. Ullmann, Mol. Cell Biol. 6:2957-2962, 1986) has been inserted into nucleoside transport-deficient S49 cells. Two classes of mutants expressing this nucleobase permease were generated. The first, as exemplified by the AE1HADPAB2 cell line, possessed an augmented capacity to transport low concentrations of the three purine bases, hypoxanthine, guanine, and adenine. The second class of mutants, as typified by the AE1HADPAB5 clone, possessed an augmented capability to translocate low levels of hypoxanthine and guanine, but not adenine. Neither the AE1HADPAB2 nor the AE1HADPAB5 cells could transport nucleosides, suggesting that the expression of the high-affinity base transporter did not reverse the mutation in the nucleoside transport system. The transport of purine bases by both AE1HADPAB2 and AE1HADPAB5 cells was much less sensitive than that by wild-type cells to inhibition by dipyridamole, 4-nitrobenzylthionosine, and N-ethylmaleimide, potent inhibitors of nucleoside and nucleobase transport in wild-type S49 cells. Fusion of the AE1HADPAB2 and AE1HADPAB5 cell lines with wild-type cells indicated that the expression of the high-affinity base transporter behaved in a dominant fashion, while the nucleoside transport deficiency was a recessive trait. These data suggest that the high-affinity purine base transporter of mutant cells and the nucleoside transport function of wild-type cells are products of different genes and that expression of the former probably requires the unmasking or alteration of a specific genetic locus that is silent or different in wild-type cells.


1987 ◽  
Vol 7 (1) ◽  
pp. 97-103 ◽  
Author(s):  
B Ullman ◽  
J Patrick ◽  
K McCartan

A novel type of somatic mutation that causes the expression of a high-affinity purine base permease (B. Aronow, D. Toll, J. Patrick, P. Hollingsworth, K. McCartan, and B. Ullmann, Mol. Cell Biol. 6:2957-2962, 1986) has been inserted into nucleoside transport-deficient S49 cells. Two classes of mutants expressing this nucleobase permease were generated. The first, as exemplified by the AE1HADPAB2 cell line, possessed an augmented capacity to transport low concentrations of the three purine bases, hypoxanthine, guanine, and adenine. The second class of mutants, as typified by the AE1HADPAB5 clone, possessed an augmented capability to translocate low levels of hypoxanthine and guanine, but not adenine. Neither the AE1HADPAB2 nor the AE1HADPAB5 cells could transport nucleosides, suggesting that the expression of the high-affinity base transporter did not reverse the mutation in the nucleoside transport system. The transport of purine bases by both AE1HADPAB2 and AE1HADPAB5 cells was much less sensitive than that by wild-type cells to inhibition by dipyridamole, 4-nitrobenzylthionosine, and N-ethylmaleimide, potent inhibitors of nucleoside and nucleobase transport in wild-type S49 cells. Fusion of the AE1HADPAB2 and AE1HADPAB5 cell lines with wild-type cells indicated that the expression of the high-affinity base transporter behaved in a dominant fashion, while the nucleoside transport deficiency was a recessive trait. These data suggest that the high-affinity purine base transporter of mutant cells and the nucleoside transport function of wild-type cells are products of different genes and that expression of the former probably requires the unmasking or alteration of a specific genetic locus that is silent or different in wild-type cells.


2005 ◽  
Vol 280 (23) ◽  
pp. 22060-22069 ◽  
Author(s):  
Jonathan D. Stallings ◽  
Edward G. Tall ◽  
Srinivas Pentyala ◽  
Mario J. Rebecchi

Nuclear phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, fluctuate throughout the cell cycle and are linked to proliferation and differentiation. Here we report that phospholipase C-δ1 accumulates in the nucleus at the G1/S boundary and in G0 phases of the cell cycle. Furthermore, as wild-type protein accumulated in the nucleus, nuclear phosphatidylinositol 4,5-bisphosphate levels were elevated 3–5-fold, whereas total levels were decreased compared with asynchronous cultures. To test whether phosphatidylinositol 4,5-bisphosphate binding is important during this process, we introduced a R40D point mutation within the pleckstrin homology domain of phospholipase C-δ1, which disables high affinity phosphatidylinositol 4,5-bisphosphate binding, and found that nuclear translocation was significantly reduced at G1/S and in G0. These results demonstrate a cell cycle-dependent compartmentalization of phospholipase C-δ1 and support the idea that relative levels of phosphoinositides modulate the portioning of phosphoinositide-binding proteins between the nucleus and other compartments.


Author(s):  
YuE Kravchenko ◽  
SV Ivanov ◽  
DS Kravchenko ◽  
EI Frolova ◽  
SP Chumakov

Selection of antibodies using phage display involves the preliminary cloning of the repertoire of sequences encoding antigen-binding domains into phagemid, which is considered the bottleneck of the method, limiting the resulting diversity of libraries and leading to the loss of poorly represented variants before the start of the selection procedure. Selection in cell-free conditions using a ribosomal display is devoid from this drawback, however is highly sensitive to PCR artifacts and the RNase contamination. The aim of the study was to test the efficiency of a combination of both methods, including pre-selection in a cell-free system to enrich the source library, followed by cloning and final selection using phage display. This approach may eliminate the shortcomings of each method and increase the efficiency of selection. For selection, alpaca VHH antibody sequences suitable for building an immune library were used due to the lack of VL domains. Analysis of immune libraries from the genes of the VH3, VHH3 and VH4 families showed that the VHH antibodies share in the VH3 and VH4 gene groups is insignificant, and selection from the combined library is less effective than from the VHH3 family of sequences. We found that the combination of ribosomal and phage displays leads to a higher enrichment of high-affinity fragments and avoids the loss of the original diversity during cloning. The combined method allowed us to obtain a greater number of different high-affinity sequences, and all the tested VHH fragments were able to specifically recognize the target, including the total protein extracts of cell cultures.


2021 ◽  
Author(s):  
Amit Ketkar ◽  
Lane Smith ◽  
Callie Johnson ◽  
Alyssa Richey ◽  
Makayla Berry ◽  
...  

Abstract We previously reported that human Rev1 (hRev1) bound to a parallel-stranded G-quadruplex (G4) from the c-MYC promoter with high affinity. We have extended those results to include other G4 motifs, finding that hRev1 exhibited stronger affinity for parallel-stranded G4 than either anti-parallel or hybrid folds. Amino acids in the αE helix of insert-2 were identified as being important for G4 binding. Mutating E466 and Y470 to alanine selectively perturbed G4 binding affinity. The E466K mutant restored wild-type G4 binding properties. Using a forward mutagenesis assay, we discovered that loss of hRev1 increased G4 mutation frequency >200-fold compared to the control sequence. Base substitutions and deletions occurred around and within the G4 motif. Pyridostatin (PDS) exacerbated this effect, as the mutation frequency increased >700-fold over control and deletions upstream of the G4 site more than doubled. Mutagenic replication of G4 DNA (±PDS) was partially rescued by wild-type and E466K hRev1. The E466A or Y470A mutants failed to suppress the PDS-induced increase in G4 mutation frequency. These findings have implications for the role of insert-2, a motif conserved in vertebrates but not yeast or plants, in Rev1-mediated suppression of mutagenesis during G4 replication.


2003 ◽  
Vol 122 (3) ◽  
pp. 295-306 ◽  
Author(s):  
Sonia Traverso ◽  
Laura Elia ◽  
Michael Pusch

Opening of CLC chloride channels is coupled to the translocation of the permeant anion. From the recent structure determination of bacterial CLC proteins in the closed and open configuration, a glutamate residue was hypothesized to form part of the Cl−-sensitive gate. The negatively charged side-chain of the glutamate was suggested to occlude the permeation pathway in the closed state, while opening of a single protopore of the double-pore channel would reflect mainly a movement of this side-chain toward the extracellular pore vestibule, with little rearrangement of the rest of the channel. Here we show that mutating this critical residue (Glu166) in the prototype Torpedo CLC-0 to alanine, serine, or lysine leads to constitutively open channels, whereas a mutation to aspartate strongly slowed down opening. Furthermore, we investigated the interaction of the small organic channel blocker p-chlorophenoxy-acetic acid (CPA) with the mutants E166A and E166S. Both mutants were strongly inhibited by CPA at negative voltages with a >200-fold larger affinity than for wild-type CLC-0 (apparent KD at −140 mV ∼4 μM). A three-state linear model with an open state, a low-affinity and a high-affinity CPA-bound state can quantitatively describe steady-state and kinetic properties of the CPA block. The parameters of the model and additional mutagenesis suggest that the high-affinity CPA-bound state is similar to the closed configuration of the protopore gate of wild-type CLC-0. In the E166A mutant the glutamate side chain that occludes the permeation pathway is absent. Thus, if gating consists only in movement of this side-chain the mutant E166A should not be able to assume a closed conformation. It may thus be that fast gating in CLC-0 is more complex than anticipated from the bacterial structures.


2004 ◽  
Vol 72 (11) ◽  
pp. 6589-6596 ◽  
Author(s):  
Ricky L. Ulrich ◽  
David DeShazer ◽  
Harry B. Hines ◽  
Jeffrey A. Jeddeloh

ABSTRACT Numerous gram-negative bacterial pathogens regulate virulence factor expression by using a cell density mechanism termed quorum sensing (QS). An in silico analysis of the Burkholderia mallei ATCC 23344 genome revealed that it encodes at least two luxI and four luxR homologues. Using mass spectrometry, we showed that wild-type B. mallei produces the signaling molecules N-octanoyl-homoserine lactone and N-decanoyl-homoserine lactone. To determine if QS is involved in the virulence of B. mallei, we generated mutations in each putative luxIR homologue and tested the pathogenicities of the derivative strains in aerosol BALB/c mouse and intraperitoneal hamster models. Disruption of the B. mallei QS alleles, especially in RJ16 (bmaII) and RJ17 (bmaI3), which are luxI mutants, significantly reduced virulence, as indicated by the survival of mice who were aerosolized with 104 CFU (10 50% lethal doses [LD50s]). For the B. mallei transcriptional regulator mutants (luxR homologues), mutation of the bmaR5 allele resulted in the most pronounced decrease in virulence, with 100% of the challenged animals surviving a dose of 10 LD50s. Using a Syrian hamster intraperitoneal model of infection, we determined the LD50s for wild-type B. mallei and each QS mutant. An increase in the relative LD50 was found for RJ16 (bmaI1) (>967 CFU), RJ17 (bmaI3) (115 CFU), and RJ20 (bmaR5) (151 CFU) compared to wild-type B. mallei (<13 CFU). These findings demonstrate that B. mallei carries multiple luxIR homologues that either directly or indirectly regulate the biosynthesis of an essential virulence factor(s) that contributes to the pathogenicity of B. mallei in vivo.


2015 ◽  
Vol 308 (8) ◽  
pp. C631-C641 ◽  
Author(s):  
Michele Visentin ◽  
Ersin Selcuk Unal ◽  
Mitra Najmi ◽  
Andras Fiser ◽  
Rongbao Zhao ◽  
...  

The proton-coupled folate transporter (PCFT) mediates intestinal folate absorption and transport of folates across the choroid plexus. This study focuses on the role of Tyr residues in PCFT function. The substituted Cys-accessibility method identified four Tyr residues (Y291, Y362, Y315, and Y414) that are accessible to the extracellular compartment; three of these (Y291, Y362, and Y315) are located within or near the folate binding pocket. When the Tyr residues were replaced with Cys or Ala, these mutants showed similar (up to 6-fold) increases in influx Vmax and Kt/ Ki for [3H]methotrexate and [3H]pemetrexed. When the Tyr residues were replaced with Phe, these changes were moderated or absent. When Y315A PCFT was used as representative of the mutants and [3H]pemetrexed as the transport substrate, this substitution did not increase the efflux rate constant. Furthermore, neither influx nor efflux mediated by Y315A PCFT was transstimulated by the presence of substrate in the opposite compartment; however, substantial bidirectional transstimulation of transport was mediated by wild-type PCFT. This resulted in a threefold greater efflux rate constant for cells that express wild-type PCFT than for cells that express Y315 PCFT under exchange conditions. These data suggest that these Tyr residues, possibly through their rigid side chains, secure the carrier in a high-affinity state for its folate substrates. However, this may be achieved at the expense of constraining the carrier's mobility, thereby decreasing the rate at which the protein oscillates between its conformational states. The Vmax generated by these Tyr mutants may be so rapid that further augmentation during transstimulation may not be possible.


Sign in / Sign up

Export Citation Format

Share Document