scholarly journals Genome Analysis of “Candidatus Regiella insecticola” Strain TUt, Facultative Bacterial Symbiont of the Pea Aphid Acyrthosiphon pisum

2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Naruo Nikoh ◽  
Tsutomu Tsuchida ◽  
Ryuichi Koga ◽  
Kenshiro Oshima ◽  
Masahira Hattori ◽  
...  

ABSTRACT The genome of “Candidatus Regiella insecticola” strain TUt, a facultative bacterial symbiont of the pea aphid Acyrthosiphon pisum, was analyzed. We determined a 2.5-Mb draft genome consisting of 14 contigs; this will contribute to the understanding of the symbiont, which underpins various ecologically adaptive traits of the host insect.

BMC Genomics ◽  
2006 ◽  
Vol 7 (1) ◽  
Author(s):  
Alex CC Wilson ◽  
Helen E Dunbar ◽  
Gregory K Davis ◽  
Wayne B Hunter ◽  
David L Stern ◽  
...  

2009 ◽  
Vol 75 (22) ◽  
pp. 7294-7297 ◽  
Author(s):  
John Bermingham ◽  
Andr�ane Rabatel ◽  
Federica Calevro ◽  
Jos� Vi�uelas ◽  
G�rard Febvay ◽  
...  

ABSTRACT Of the 617 genes from Buchnera aphidicola, the obligate bacterial symbiont of the pea aphid, 23% were differentially expressed in embryos compared to adults. Genes involved in flagellar apparatus and riboflavin synthesis exhibited particularly robust upregulation in embryos, suggesting functional differences between the symbiosis in the adult and embryo insect.


2019 ◽  
Vol 8 (19) ◽  
Author(s):  
Naruo Nikoh ◽  
Ryuichi Koga ◽  
Kenshiro Oshima ◽  
Masahira Hattori ◽  
Takema Fukatsu

“Candidatus Serratia symbiotica” is a facultative bacterial symbiont of aphids that affects various ecological traits of the host insects. Here, we report the complete genome sequence of “Candidatus Serratia symbiotica” strain IS, consisting of a 2,736,352-bp chromosome and an 82,605-bp plasmid, from the pea aphid Acyrthosiphon pisum.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
Cesar Auguste Badji ◽  
Zoé Sol-Mochkovitch ◽  
Charlotte Fallais ◽  
Corentin Sochard ◽  
Jean-Christophe Simon ◽  
...  

Aphids use an alarm pheromone, E-β farnesene (EBF), to warn conspecifics of potential danger. The antennal sensitivity and behavioural escape responses to EBF can be influenced by different factors. In the pea aphid, Acyrthosiphon pisum, different biotypes are adapted to different legume species, and within each biotype, different genotypes exist, which can carry or not Hamiltonella defensa, a bacterial symbiont that can confer protection against natural enemies. We investigate here the influence of the aphid genotype and symbiotic status on the escape behaviour using a four-way olfactometer and antennal sensitivity for EBF using electroantennograms (EAGs). Whereas the investigated three genotypes from two biotypes showed significantly different escape and locomotor behaviours in the presence of certain EBF doses, the infection with H. defensa did not significantly modify the escape behaviour and only marginally influenced the locomotor behaviour at high doses of EBF. Dose-response curves of EAG amplitudes after stimulation with EBF differed significantly between aphid genotypes in correlation with behavioural differences, whereas antennal sensitivity to EBF did not change significantly as a function of the symbiotic status. The protective symbiont H. defensa does thus not modify the olfactory sensitivity to the alarm pheromone. How EBF sensitivity is modified between genotypes or biotypes remains to be investigated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guang Wang ◽  
Jing-Jiang Zhou ◽  
Yan Li ◽  
Yuping Gou ◽  
Peter Quandahor ◽  
...  

AbstractTrehalose serves multifarious roles in growth and development of insects. In this study, we demonstrated that the high trehalose diet increased the glucose content, and high glucose diet increased the glucose content but decreased the trehalose content of Acyrthosiphon pisum. RNA interference (RNAi) of trehalose-6-phosphate synthase gene (ApTPS) decreased while RNAi of trehalase gene (ApTRE) increased the trehalose and glucose contents. In the electrical penetration graph experiment, RNAi of ApTPS increased the percentage of E2 waveform and decreased the percentage of F and G waveforms. The high trehalose and glucose diets increased the percentage of E2 waveform of A. pisum red biotype. The correlation between feeding behavior and sugar contents indicated that the percentage of E1 and E2 waveforms were increased but np, C, F and G waveforms were decreased in low trehalose and glucose contents. The percentage of np, E1 and E2 waveforms were reduced but C, F and G waveforms were elevated in high trehalose and glucose contents. The results suggest that the A. pisum with high trehalose and glucose contents spent less feeding time during non-probing phase and phloem feeding phase, but had an increased feeding time during probing phase, stylet work phase and xylem feeding phase.


1983 ◽  
Vol 115 (12) ◽  
pp. 1615-1619 ◽  
Author(s):  
William D. Hutchison ◽  
David B. Hogg

AbstractCornicle length measuremetns of Acyrthosiphon pisum (Harris) nymphs reared in the laboratory were instar-specific and unaffected by rearing temperature. A multimodal analysis of cornicle lengths of field-collected aphids clearly detected four distribution peaks (i.e., instars) in five different field populations, and there was generaaly little overlap between successive instar distributions. However, third and fourth instars in the spring field sample could not be separated accurately due to the shorter cornicle length of nymphs that developed from overwintered eggs. Cornicle length proved to be a useful criterion for separating virginoparous A. pisum instars in samples collected in southern Wisconsin.


2006 ◽  
Vol 72 (3) ◽  
pp. 1956-1965 ◽  
Author(s):  
Anne-Marie Grenier ◽  
Gabrielle Duport ◽  
Sylvie Pagès ◽  
Guy Condemine ◽  
Yvan Rahbé

ABSTRACT Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum. The pathogenicity of D. dadantii was tested on the pea aphid Acyrthosiphon pisum, and the bacterium was shown to be highly virulent for this insect, either by septic injury or by oral infection. The lethal inoculum dose was calculated to be as low as 10 ingested bacterial cells. A D. dadantii mutant with the four cytotoxin genes deleted showed a reduced per os virulence for A. pisum, highlighting the potential role of at least one of these genes in pathogenicity. Since only one bacterial pathogen of aphids has been previously described (Erwinia aphidicola), other species from the same bacterial group were tested. The pathogenic trait for aphids was shown to be widespread, albeit variable, within the phytopathogens, with no link to phylogenetic positioning in the Enterobacteriaceae. Previously characterized gut symbionts from thrips (Erwinia/Pantoea group) were also highly pathogenic to the aphid, whereas the potent entomopathogen Photorhabdus luminescens was not. D. dadantii is not a generalist insect pathogen, since it has low pathogenicity for three other insect species (Drosophila melanogaster, Sitophilus oryzae, and Spodoptera littoralis). D. dadantii was one of the most virulent aphid pathogens in our screening, and it was active on most aphid instars, except for the first one, probably due to anatomical filtering. The observed difference in virulence toward apterous and winged aphids may have an ecological impact, and this deserves specific attention in future research.


Sign in / Sign up

Export Citation Format

Share Document