scholarly journals Complete Genome Sequences of Bacteriophages Kaya, Guyu, Kopi, and TehO, Which Target Clinical Strains of Pseudomonas aeruginosa

2021 ◽  
Vol 10 (48) ◽  
Author(s):  
Belinda Loh ◽  
Xiaoqing Wang ◽  
Xiaoting Hua ◽  
Junhan Luo ◽  
Tanye Wen ◽  
...  

Pseudomonas aeruginosa is a major public health concern, as drug-resistant strains increase mortality in hospital-acquired infections. We report the isolation and complete genome sequences of four lytic bacteriophages that target clinical multidrug-resistant P. aeruginosa strains.

2020 ◽  
Vol 9 (29) ◽  
Author(s):  
Jason Farlow ◽  
Helen R. Freyberger ◽  
Yunxiu He ◽  
Amanda M. Ward ◽  
Wiriya Rutvisuttinunt ◽  
...  

ABSTRACT We report the genome sequences of 10 Pseudomonas aeruginosa phages studied for their potential for formulation of a therapeutic cocktail; they represent the families Myoviridae, Podoviridae, and Siphoviridae. Genome sizes ranged from 43,299 to 88,728 nucleotides, with G+C contents of 52.1% to 62.2%. The genomes contained 68 to 168 coding sequences.


2019 ◽  
Vol 8 (9) ◽  
Author(s):  
Bárbara Magalhães ◽  
Laurence Senn ◽  
Dominique S. Blanc

Pseudomonas aeruginosa is one of the major Gram-negative pathogens responsible for hospital-acquired infections. Here, we present high-quality genome sequences of isolates from three P. aeruginosa genotypes retrieved from patients hospitalized in intensive care units.


2016 ◽  
Vol 4 (4) ◽  
Author(s):  
Brock A. Arivett ◽  
Dave C. Ream ◽  
Steven E. Fiester ◽  
Destaalem Kidane ◽  
Luis A. Actis

Pseudomonas aeruginosa , a Gram-negative bacterium that causes severe hospital-acquired infections, is grouped as an ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa , and Enterobacter species) pathogen because of its extensive drug resistance phenotypes and effects on human health worldwide. Five multidrug resistant P. aeruginosa strains isolated from wounded military personnel were sequenced and annotated in this work.


2017 ◽  
Vol 5 (27) ◽  
Author(s):  
Adam Heikal ◽  
Ørjan Samuelsen ◽  
Tom Kristensen ◽  
Ole Andreas Økstad

ABSTRACT Multidrug-resistant Klebsiella pneumoniae is a major cause of hospital-acquired infections. Here, we report the complete genome sequence of the multidrug-resistant, bla NDM-1-positive strain K. pneumoniae K66-45, isolated from a hospitalized Norwegian patient.


2018 ◽  
Vol 7 (17) ◽  
Author(s):  
Teddy Grandjean ◽  
Rémi Le Guern ◽  
Claire Duployez ◽  
Karine Faure ◽  
Eric Kipnis ◽  
...  

Pseudomonas aeruginosa infections are challenging due to intrinsic and acquired resistance mechanisms. We report here the draft genome sequences of two multidrug-resistant strains—PAL0.1, isolated from the airways of an intensive care unit (ICU) patient with ventilator-associated pneumonia, and PAL1.1, isolated from blood cultures of an ICU patient with sepsis.


2019 ◽  
Vol 8 (39) ◽  
Author(s):  
Nicholas Martinez ◽  
Eric Williams ◽  
Heather Newkirk ◽  
Mei Liu ◽  
Jason J. Gill ◽  
...  

Klebsiella pneumoniae is a multidrug-resistant bacterium causing many severe hospital-acquired infections. Here, we describe siphophage Sweeny that infects K. pneumoniae. Of its 78 predicted protein-encoding genes, a functional assignment was given to 36 of them. Sweeny is most closely related to T1-like phages at the protein level.


2018 ◽  
Vol 6 (14) ◽  
Author(s):  
Natacha Couto ◽  
Monika A. Chlebowicz ◽  
Erwin C. Raangs ◽  
Alex W. Friedrich ◽  
John W. Rossen

ABSTRACT The emergence of nosocomial infections by multidrug-resistant Staphylococcus haemolyticus isolates has been reported in several European countries. Here, we report the first two complete genome sequences of S. haemolyticus sequence type 25 (ST25) isolates 83131A and 83131B. Both isolates were isolated from the same clinical sample and were first identified through shotgun metagenomics.


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
A. L. Bidaud ◽  
F. Botterel ◽  
A. Chowdhary ◽  
E. Dannaoui

ABSTRACT Candida auris is an emerging, multidrug-resistant pathogen responsible for invasive hospital-acquired infections. Flucytosine is an effective anti-Candida species drug, but which cannot be used as a monotherapy because of the risk of development of resistant mutants during treatment. It is, therefore, noteworthy to test possible combinations with flucytosine that may have a synergistic interaction. In this study, we determined the in vitro interaction between flucytosine and amphotericin B, micafungin, or voriconazole. These combinations have been tested against 15 C. auris isolates. The MIC ranges (geometric mean [Gmean]) of flucytosine, amphotericin B, micafungin, and voriconazole were 0.125 to 1 μg/ml (0.42 μg/ml), 0.25 to 1 μg/ml (0.66 μg/ml), 0.125 to 0.5 μg/ml (0.3 μg/ml), and 0.03 to 4 μg/ml (1.05 μg/ml), respectively. When tested in combination, indifferent interactions were mostly observed with fractional inhibitory concentration index values from 0.5 to 1, 0.31 to 1.01, and 0.5 to 1.06 for the combinations of flucytosine with amphotericin B, micafungin, and voriconazole, respectively. A synergy was observed for the strain CBS 10913 from Japan. No antagonism was observed for any combination. The combination of flucytosine with amphotericin B or micafungin may be relevant for the treatment of C. auris infections.


2020 ◽  
Vol 16 ◽  
pp. 117693432093626
Author(s):  
Iván Darío Ocampo-Ibáñez ◽  
Yamil Liscano ◽  
Sandra Patricia Rivera-Sánchez ◽  
José Oñate-Garzón ◽  
Ashley Dayan Lugo-Guevara ◽  
...  

Infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa and Klebsiella pneumoniae are a serious worldwide public health concern due to the ineffectiveness of empirical antibiotic therapy. Therefore, research and the development of new antibiotic alternatives are urgently needed to control these bacteria. The use of cationic antimicrobial peptides (CAMPs) is a promising candidate alternative therapeutic strategy to antibiotics because they exhibit antibacterial activity against both antibiotic susceptible and MDR strains. In this study, we aimed to investigate the in vitro antibacterial effect of a short synthetic CAMP derived from the ΔM2 analog of Cec D-like (CAMP-CecD) against clinical isolates of K pneumoniae (n = 30) and P aeruginosa (n = 30), as well as its hemolytic activity. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of CAMP-CecD against wild-type and MDR strains were determined by the broth microdilution test. In addition, an in silico molecular dynamic simulation was performed to predict the interaction between CAMP-CecD and membrane models of K pneumoniae and P aeruginosa. The results revealed a bactericidal effect of CAMP-CecD against both wild-type and resistant strains, but MDR P aeruginosa showed higher susceptibility to this peptide with MIC values between 32 and >256 μg/mL. CAMP-CecD showed higher stability in the P aeruginosa membrane model compared with the K pneumoniae model due to the greater number of noncovalent interactions with phospholipid 1-Palmitoyl-2-oleyl-sn-glycero-3-(phospho-rac-(1-glycerol)) (POPG). This may be related to the boosted effectiveness of the peptide against P aeruginosa clinical isolates. Given the antibacterial activity of CAMP-CecD against wild-type and MDR clinical isolates of P aeruginosa and K pneumoniae and its nonhemolytic effects on human erythrocytes, CAMP-CecD may be a promising alternative to conventional antibiotics.


2019 ◽  
Vol 8 (19) ◽  
Author(s):  
Katherine T. Nguyen ◽  
Rachele Bonasera ◽  
Garret Benson ◽  
Adriana C. Hernandez-Morales ◽  
Jason J. Gill ◽  
...  

May is a newly isolated myophage that infects multidrug-resistant strains of Klebsiella pneumoniae, a pathogen that is associated with antibiotic-resistant infections in humans. The genome of May has been shown to be similar to that of phage Vi01.


Sign in / Sign up

Export Citation Format

Share Document