scholarly journals Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment inSaccharomyces cerevisiae

mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Elizabeth A. McDaniel ◽  
Tara N. Stuecker ◽  
Manasa Veluvolu ◽  
Audrey P. Gasch ◽  
Jeffrey A. Lewis

ABSTRACTAll living organisms must recognize and respond to various environmental stresses throughout their lifetime. In natural environments, cells frequently encounter fluctuating concentrations of different stressors that can occur in combination or sequentially. Thus, the ability to anticipate an impending stress is likely ecologically relevant. One possible mechanism for anticipating future stress is acquired stress resistance, where cells preexposed to a mild sublethal dose of stress gain the ability to survive an otherwise lethal dose of stress. We have been leveraging wild strains ofSaccharomyces cerevisiaeto investigate natural variation in the yeast ethanol stress response and its role in acquired stress resistance. Here, we report that a wild vineyard isolate possesses ethanol-induced cross protection against severe concentrations of salt. Because this phenotype correlates with ethanol-dependent induction of theENAgenes, which encode sodium efflux pumps already associated with salt resistance, we hypothesized that variation inENAexpression was responsible for differences in acquired salt tolerance across strains. Surprisingly, we found that theENAgenes were completely dispensable for ethanol-induced survival of high salt concentrations in the wild vineyard strain. Instead, theENAgenes were necessary for the ability to resume growth on high concentrations of salt following a mild ethanol pretreatment. Surprisingly, this growth acclimation phenotype was also shared by the lab yeast strain despite lack ofENAinduction under this condition. This study underscores that cross protection can affect both viability and growth through distinct mechanisms, both of which likely confer fitness effects that are ecologically relevant.IMPORTANCEMicrobes in nature frequently experience “boom or bust” cycles of environmental stress. Thus, microbes that can anticipate the onset of stress would have an advantage. One way that microbes anticipate future stress is through acquired stress resistance, where cells exposed to a mild dose of one stress gain the ability to survive an otherwise lethal dose of a subsequent stress. In the budding yeastSaccharomyces cerevisiae, certain stressors can cross protect against high salt concentrations, though the mechanisms governing this acquired stress resistance are not well understood. In this study, we took advantage of wild yeast strains to understand the mechanism underlying ethanol-induced cross protection against high salt concentrations. We found that mild ethanol stress allows cells to resume growth on high salt, which involves a novel role for a well-studied salt transporter. Overall, this discovery highlights how leveraging natural variation can provide new insights into well-studied stress defense mechanisms.

2018 ◽  
Author(s):  
Elizabeth A. McDaniel ◽  
Tara N. Stuecker ◽  
Manasa Veluvolu ◽  
Audrey P. Gasch ◽  
Jeffrey A. Lewis

ABSTRACTAll living organisms must recognize and respond to various environmental stresses throughout their lifetime. In natural environments, cells frequently encounter fluctuating concentrations of different stressors that can occur in combination or sequentially. Thus, the ability to anticipate an impending stress is likely ecologically relevant. One possible mechanism for anticipating future stress is acquired stress resistance, where cells pre-exposed to a mild sub-lethal dose of stress gain the ability to survive an otherwise lethal dose of stress. We have been leveraging wild strains ofSaccharomyces cerevisiaeto investigate natural variation in the yeast ethanol stress response and its role in acquired stress resistance. Here, we report that a wild vineyard isolate possesses ethanol-induced cross-protection against severe concentrations of salt. Because this phenotype correlates with ethanol-dependent induction of theENAgenes, which encode sodium efflux pumps already associated with salt resistance, we hypothesized that variation inENAexpression was responsible for differences in acquired salt tolerance across strains. Surprisingly, we found that theENAgenes were completely dispensable for ethanol-induced survival of high salt concentrations in the wild vineyard strain. Instead, theENAgenes were necessary for the ability to resume growth on high concentrations of salt following a mild ethanol pretreatment. Surprisingly, this growth acclimation phenotype was also shared by the lab yeast strain despite lack ofENAinduction under this condition. This study underscores that cross protection can affect both viability and growth through distinct mechanisms, both of which likely confer fitness effects that are ecologically relevant.IMPORTANCEMicrobes in nature frequently experience “boom or bust” cycles of environmental stress. Thus, microbes that can anticipate the onset of stress would have an advantage. One way microbes anticipate future stress is through acquired stress resistance, where cells exposed to a mild dose of one stress gain the ability survive an otherwise lethal dose of a subsequent stress. In the budding yeastSaccharomyces cerevisiae,certain stressors can cross protect against high salt concentrations, though the mechanisms governing this acquisition of higher stress resistance are not well understood. In this study, we took advantage of wild yeast strains to understand the mechanism underlying ethanol-induced cross protection against high salt concentrations. We found that mild ethanol stress allows cells to resume growth on high salt, which involves a novel role for a well-studied salt transporter. Overall, this discovery highlights how leveraging natural variation can provide new insights into well-studied stress defense mechanisms.


2011 ◽  
Vol 78 (2) ◽  
pp. 385-392 ◽  
Author(s):  
Chiemi Noguchi ◽  
Daisuke Watanabe ◽  
Yan Zhou ◽  
Takeshi Akao ◽  
Hitoshi Shimoi

ABSTRACTModern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p inSaccharomyces cerevisiaesake yeast. The HSE-lacZactivity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. SinceHSF1allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entirePPT1gene locus. We confirmed that the expression of laboratory yeast-derived functionalPPT1recovered the HSE-mediated stress response of sake yeast. In addition, deletion ofPPT1in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of thePPT1gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.


2017 ◽  
Author(s):  
Tara N. Stuecker ◽  
Amanda N. Scholes ◽  
Jeffrey A. Lewis

AbstractGene expression variation is extensive in nature, and is hypothesized to play a major role in shaping phenotypic diversity. However, connecting differences in gene expression across individuals to higher-order organismal traits is not trivial. In many cases, gene expression variation may be evolutionarily neutral, and in other cases expression variation may only affect phenotype under specific conditions. To understand connections between gene expression variation and stress defense phenotypes, we have been leveraging extensive natural variation in the gene expression response to acute ethanol in laboratory and wild Saccharomyces cerevisiae strains. Previous work found that the genetic architecture underlying these expression differences included dozens of “hotspot” loci that affected many transcripts in trans. In the present study, we provide new evidence that one of these expression QTL hotspot loci is responsible for natural variation in one particular stress defense phenotype—ethanol-induced cross protection against severe doses of H2O2. The causative polymorphism is in the heme-activated transcription factor Hap1p, which we show directly impacts cross protection, but not the basal H2O2 resistance of unstressed cells. This provides further support that distinct cellular mechanisms underlie basal and acquired stress resistance. We also show that the Hap1p-dependent cross protection relies on novel regulation of cytosolic catalase T (Ctt1p) during ethanol stress in wild strains. Because ethanol accumulation precedes aerobic respiration and accompanying reactive oxygen species formation, wild strains with the ability to anticipate impending oxidative stress would likely be at an advantage. This study highlights how strategically chosen traits that better correlate with gene expression changes can improve our power to identify novel connections between gene expression variation and higher-order organismal phenotypes.


2015 ◽  
Vol 14 (9) ◽  
pp. 884-897 ◽  
Author(s):  
Steve Swinnen ◽  
Annelies Goovaerts ◽  
Kristien Schaerlaekens ◽  
Françoise Dumortier ◽  
Pieter Verdyck ◽  
...  

ABSTRACTVery high ethanol tolerance is a distinctive trait of the yeastSaccharomyces cerevisiaewith notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained theura3Δ0mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage forLYS2,LEU2,HIS3, andMET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress.


2011 ◽  
Vol 77 (15) ◽  
pp. 5247-5256 ◽  
Author(s):  
Hermien van Bokhorst-van de Veen ◽  
Tjakko Abee ◽  
Marcel Tempelaars ◽  
Peter A. Bron ◽  
Michiel Kleerebezem ◽  
...  

ABSTRACTThis paper describes the molecular responses ofLactobacillus plantarumWCFS1 toward ethanol exposure. Global transcriptome profiling using DNA microarrays demonstrated adaptation of the microorganism to the presence of 8% ethanol over short (10-min and 30-min) and long (24-h) time intervals. A total of 57 genes were differentially expressed at all time points. Expression levels of an additional 859 and 873 genes were modulated after 30 min and 24 h of exposure to the solvent, respectively. Ethanol exposure led to induced expression of genes involved in citrate metabolism and cell envelope architecture, as well as canonical stress response pathways controlled by the central stress regulators HrcA and CtsR. Correspondingly, cells grown for 24 h in medium containing 8% ethanol exhibited higher levels of citrate consumption and modified cell membrane fatty acid composition and showed invaginating septa compared with cells grown in liquid medium without ethanol. In addition, these physiological changes resulted in cross-protection against high temperatures but not against several other stresses tested. To evaluate the role of HrcA and CtsR in ethanol tolerance,ctsRandhrcAgene deletion mutants were constructed. The growth rate of theL. plantarumΔctsR::catstrain was impaired in de Man-Rogosa-Sharpe (MRS) medium containing 8% ethanol, whereas growth of theL. plantarumΔhrcA::catand ΔctsRΔhrcA::catmutants was indistinguishable from that of wild-type cells. Overall, these results suggest that the induction of CtsR class III stress responses provides cross-protection against heat stress.


Author(s):  
Masashi Yoshida ◽  
Sae Kato ◽  
Shizu Fukuda ◽  
Shingo Izawa

Acute severe ethanol stress (10% v/v) damages proteins and causes the intracellular accumulation of insoluble proteins in Saccharomyces cerevisiae. On the other hand, a pretreatment with mild stress increases tolerance to subsequent severe stress, which is called acquired stress resistance. It currently remains unclear whether the accumulation of insoluble proteins under severe ethanol stress may be mitigated by increasing protein quality control (PQC) activity in cells pretreated with mild stress. In the present study, we examined the induction of resistance to severe ethanol stress in PQC, and confirmed that a pretreatment with 6% (v/v) ethanol or mild thermal stress at 37°C significantly reduced insoluble protein levels and the aggregation of Lsg1, which is prone to denaturation and aggregation by stress, in yeast cells under 10% (v/v) ethanol stress. The induction of this stress resistance required the new synthesis of proteins; the expression of proteins comprising the bi-chaperone system (Hsp104, Ssa3, and Fes1), Sis1, and Hsp42 was up-regulated during the pretreatment and maintained under subsequent severe ethanol stress. Since the pretreated cells of deficient mutants in the bi-chaperone system (fes1Δhsp104Δ and ssa2Δssa3Δssa4Δ) failed to sufficiently reduce insoluble protein levels and Lsg1 aggregation, the enhanced activity of the bi-chaperone system appears to be important for the induction of adequate stress resistance. In contrast, the importance of proteasomes and aggregases (Btn2 and Hsp42) in the induction of stress resistance has not been confirmed. These results provide further insights into the PQC activity of yeast cells under severe ethanol stress, including the brewing process. IMPORTANCE Although the budding yeast S. cerevisiae, which is used in the production of alcoholic beverages and bioethanol, is highly tolerant of ethanol, high concentrations of ethanol are also stressful to the yeast and cause various adverse effects, including protein denaturation. A pretreatment with mild stress improves the ethanol tolerance of yeast cells; however, it currently remains unclear whether it increases PQC activity and reduces the levels of denatured proteins. In the present study, we found that a pre-treatment with mild ethanol up-regulated the expression of proteins involved in PQC and mitigated the accumulation of insoluble proteins, even under severe ethanol stress. These results provide novel insights into ethanol tolerance and the adaptive capacity of yeast. They may also contribute to research on the physiology of yeast cells during the brewing process, in which the concentration of ethanol gradually increases.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 487
Author(s):  
Alexander Tomashevsky ◽  
Ekaterina Kulakovskaya ◽  
Ludmila Trilisenko ◽  
Ivan V. Kulakovskiy ◽  
Tatiana Kulakovskaya ◽  
...  

Inorganic polyphosphate (polyP) is an important factor of alkaline, heavy metal, and oxidative stress resistance in microbial cells. In yeast, polyP is synthesized by Vtc4, a subunit of the vacuole transporter chaperone complex. Here, we report reduced but reliably detectable amounts of acid-soluble and acid-insoluble polyPs in the Δvtc4 strain of Saccharomyces cerevisiae, reaching 10% and 20% of the respective levels of the wild-type strain. The Δvtc4 strain has decreased resistance to alkaline stress but, unexpectedly, increased resistance to oxidation and heavy metal excess. We suggest that increased resistance is achieved through elevated expression of DDR2, which is implicated in stress response, and reduced expression of PHO84 encoding a phosphate and divalent metal transporter. The decreased Mg2+-dependent phosphate accumulation in Δvtc4 cells is consistent with reduced expression of PHO84. We discuss a possible role that polyP level plays in cellular signaling of stress response mobilization in yeast.


2011 ◽  
Vol 55 (11) ◽  
pp. 5099-5106 ◽  
Author(s):  
Scott S. Walker ◽  
Yiming Xu ◽  
Ilias Triantafyllou ◽  
Michelle F. Waldman ◽  
Cara Mendrick ◽  
...  

ABSTRACTThe echinocandins are a class of semisynthetic natural products that target β-1,3-glucan synthase (GS). Their proven clinical efficacy combined with minimal safety issues has made the echinocandins an important asset in the management of fungal infection in a variety of patient populations. However, the echinocandins are delivered only parenterally. A screen for antifungal bioactivities combined with mechanism-of-action studies identified a class of piperazinyl-pyridazinones that target GS. The compounds exhibitedin vitroactivity comparable, and in some cases superior, to that of the echinocandins. The compounds inhibit GSin vitro, and there was a strong correlation between enzyme inhibition andin vitroantifungal activity. In addition, like the echinocandins, the compounds caused a leakage of cytoplasmic contents from yeast and produced a morphological response in molds characteristic of GS inhibitors. Spontaneous mutants ofSaccharomyces cerevisiaewith reduced susceptibility to the piperazinyl-pyridazinones had substitutions inFKS1. The sites of these substitutions were distinct from those conferring resistance to echinocandins; likewise, echinocandin-resistant isolates remained susceptible to the test compounds. Finally, we present efficacy and pharmacokinetic data on an example of the piperazinyl-pyridazinone compounds that demonstrated efficacy in a murine model ofCandida glabratainfection.


Sign in / Sign up

Export Citation Format

Share Document