scholarly journals Native Plasmid-Encoded Mercury Resistance Genes Are Functional and Demonstrate Natural Transformation in Environmental Bacterial Isolates

mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Ankita Kothari ◽  
Drishti Soneja ◽  
Albert Tang ◽  
Hans K. Carlson ◽  
Adam M. Deutschbauer ◽  
...  

ABSTRACT Plasmid-mediated horizontal gene transfer (HGT) is a major driver of genetic diversity in bacteria. We experimentally validated the function of a putative mercury resistance operon present on an abundant 8-kbp native plasmid found in groundwater samples without detectable levels of mercury. Phylogenetic analyses of the plasmid-encoded mercury reductases from the studied groundwater site show them to be distinct from those reported in proximal metal-contaminated sites. We synthesized the entire native plasmid and demonstrated that the plasmid was sufficient to confer functional mercury resistance in Escherichia coli. Given the possibility that natural transformation is a prevalent HGT mechanism in the low-cell-density environments of groundwaters, we also assayed bacterial strains from this environment for competence. We used the native plasmid-encoded metal resistance to design a screen and identified 17 strains positive for natural transformation. We selected 2 of the positive strains along with a model bacterium to fully confirm HGT via natural transformation. From an ecological perspective, the role of the native plasmid population in providing advantageous traits combined with the microbiome’s capacity to take up environmental DNA enables rapid adaptation to environmental stresses. IMPORTANCE Horizontal transfer of mobile genetic elements via natural transformation has been poorly understood in environmental microbes. Here, we confirm the functionality of a native plasmid-encoded mercury resistance operon in a model microbe and then query for the dissemination of this resistance trait via natural transformation into environmental bacterial isolates. We identified 17 strains including Gram-positive and Gram-negative bacteria to be naturally competent. These strains were able to successfully take up the plasmid DNA and obtain a clear growth advantage in the presence of mercury. Our study provides important insights into gene dissemination via natural transformation enabling rapid adaptation to dynamic stresses in groundwater environments.

2019 ◽  
Author(s):  
Ankita Kothari ◽  
Drishti Soneja ◽  
Albert Tang ◽  
Hans Carlson ◽  
Adam M. Deutschbauer ◽  
...  

AbstractPlasmid-mediated horizontal gene transfer (HGT) is a major driver of genetic diversity in bacteria. We experimentally validated the function of a putative mercury resistance operon present on an abundant 8 kilobase pair native plasmid found in groundwater samples without detectable levels of mercury. Phylogenetic analyses of the plasmid-encoded mercury reductases from the studied groundwater site show them to be distinct from those reported in proximal metal-contaminated sites. We synthesized the entire native plasmid and demonstrated that the plasmid was sufficient to confer functional mercury resistance in Escherichia coli. Given the possibility that natural transformation is a prevalent HGT mechanism in the low cell density environments of groundwaters, we also assayed bacterial strains from this environment for competence. We used the native plasmid-encoded metal resistance to design a screen and identified 17 strains positive for natural transformation. We selected 2 of the positive strains along with a model bacterium to fully confirm HGT via natural transformation. From an ecological perspective, the role of the native plasmid population in providing advantageous traits combined with the microbiome’s capacity to take up environmental DNA enables rapid adaptation to environmental stresses.ImportanceHorizontal transfer of mobile genetic elements via natural transformation has been poorly understood in environmental microbes. Here, we confirm the functionality of a native plasmid-encoded mercury resistance operon in a model microbe and then query for the dissemination of this resistance trait via natural transformation into environmental bacterial isolates. We identify seventeen strains including Gram-positive and Gram-negative bacteria to be naturally competent. These strains were able to successfully take up the plasmid DNA and obtain a clear growth advantage in the presence of mercury. Our study provides important insights into gene dissemination via natural transformation enabling rapid adaptation to dynamic stresses in groundwater environments.


Author(s):  
Caixin Yang ◽  
Yibo Bai ◽  
Kui Dong ◽  
Jing Yang ◽  
Xin-He Lai ◽  
...  

Four Gram-stain-positive, catalase-negative, non-spore-forming, rod-shaped bacterial strains (zg-325T, zg329, dk561T and dk752) were isolated from the respiratory tract of marmot (Marmota himalayana) and the faeces of Tibetan gazelle (Procapra picticaudata) from the Qinghai-Tibet Plateau of PR China. The results of 16S rRNA gene sequence-based phylogenetic analyses indicated that strains zg-325T and dk561T represent members of the genus Actinomyces , most similar to Actinomyces denticolens DSM 20671T and Actinomyces ruminicola B71T, respectively. The DNA G+C contents of strains zg-325T and dk561T were 71.6 and 69.3 mol%, respectively. The digital DNA–DNA hybridization values of strains zg-325T and dk561T with their most closely related species were below the 70 % threshold for species demarcation. The four strains grew best at 35 °C in air containing 5 % CO2 on brain heart infusion (BHI) agar with 5 % sheep blood. All four strains had C18:1ω9c and C16:0 as the major cellular fatty acids. MK-8 and MK-9 were the major menaquinones in zg-325T while MK-10 was predominant in dk561T. The major polar lipids included diphosphatidylglycerol and phosphatidylinositol. On the basis of several lines of evidence from phenotypic and phylogenetic analyses, zg-325T and dk561T represent novel species of the genus Actinomyces , for which the name Actinomyces marmotae sp. nov. and Actinomyces procaprae sp. nov. are proposed. The type strains are zg-325T (=GDMCC 1.1724T=JCM 34091T) and dk561T (=CGMCC 4.7566T=JCM 33484T). We also propose, on the basis of the phylogenetic results herein, the reclassification of Actinomyces liubingyangii and Actinomyces tangfeifanii as Boudabousia liubingyangii comb. nov. and Boudabousia tangfeifanii comb. nov., respectively.


Author(s):  
Piyanat Charoenyingcharoen ◽  
Ji-Sun Kim ◽  
Gunjana Theeragool ◽  
Keun-Chul Lee ◽  
Pattaraporn Yukphan ◽  
...  

Two novel Gram-stain-negative, rod-shaped and non-motile bacterial strains, designated B5-SW-15T and C2-DW-16, were isolated from water collected in mangrove forests in Ranong Province, Thailand. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains B5-SW-15T and C2-DW-16 belonged to the genus Donghicola and were most closely related to Donghicola tyrosinivorans DSM 100212T (98.2 and 98.1 %, respectively) and Donghicola eburneus DSM 29127T (97.7 and 97.6 %, respectively). The average nucleotide identity and digital DNA–DNA hybridization values between strain B5-SW-15T, strain C2-DW-16 and related species were 95.8 and 71.6 % (to strain C2-DW-16), 76.8 and 21.3 % (to D. tyrosinivorans DSM 100212T) and 80.3 and 24.2 % (to D. eburneus DSM 29127T), respectively. The predominant cellular fatty acids (>5 %) were summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c), C16 : 0 and C12 : 1 3-OH. Ubiquinone Q-10 was the sole respiratory quinone. DNA G+C contents of the isolates were 61.0 and 61.2 mol% based on whole genome sequences. Strains B5-SW-15T and C2-DW-16 contained aminolipid, phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. On the basis of the results from phenotypic, chemotaxonomic and phylogenetic analyses, strains B5-SW-15T and C2-DW-16 constitute a novel species of the genus Donghicola in the family Rhodobacteraceae for which the name Donghicola mangrovi sp. nov. is proposed. The type strain is B5-SW-15T (=BCC 56522T=TBRC 9562T=KCTC 72743T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3652-3658 ◽  
Author(s):  
Yu-Fan Wu ◽  
Qing-Long Wu ◽  
Shuang-Jiang Liu

Two Gram-stain-negative, facultatively anaerobic and endospore-forming rod-shaped bacterial strains, THMBG22T and R24, were isolated from decomposing algal scum. Phylogenetic analysis of 16S rRNA gene sequences showed that the two strains were closely related to each other (99.7 % similarity) and that they were also closely related to Paenibacillus sacheonensis DSM 23054T (97–97.1 %) and Paenibacillus phyllosphaerae DSM 17399T (96.1–96.4 %). This affiliation was also supported by rpoB-based phylogenetic analyses. Growth was observed at 20–40 °C (optimum, 30–37 °C) and at pH 5.0–9.0 (optimum, pH 6.0–7.0). The cells contained MK-7 as the sole respiratory quinone and anteiso-C15 : 0 as the major cellular fatty acid. Their cellular polar lipids were composed of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and 12 unidentified polar lipids. The diamino acid of their cell-wall peptidoglycan was meso-diaminopimelic acid. The DNA–DNA hybridization value between THMBG22T and R24 was 84 %, and DNA–DNA relatedness to the most closely related species with a validly published name ( P. sacheonensis ) was 35–37 %. These results supported the assignment of the new isolates to the genus Paenibacillus and also distinguished them from the previously described species of the genus Paenibacillus . Hence, it is proposed that strains THMBG22T and R24 represent a novel species of the genus Paenibacillus , with the name Paenibacillus taihuensis sp. nov. The type strain is THMBG22T ( = CGMCC 1.10966T = NBRC 108766T).


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Dallas R. Fonseca ◽  
Mohd Farid Abdul Halim ◽  
Matthew P. Holten ◽  
Kyle C. Costa

ABSTRACT Naturally competent organisms are capable of DNA uptake directly from the environment through the process of transformation. Despite the importance of transformation to microbial evolution, DNA uptake remains poorly characterized outside of the bacterial domain. Here, we identify the pilus as a necessary component of the transformation machinery in archaea. We describe two naturally competent organisms, Methanococcus maripaludis and Methanoculleus thermophilus. In M. maripaludis, replicative vectors were transferred with an average efficiency of 2.4 × 103 transformants μg−1 DNA. In M. thermophilus, integrative vectors were transferred with an average efficiency of 2.7 × 103 transformants μg−1 DNA. Additionally, natural transformation of M. thermophilus could be used to introduce chromosomal mutations. To our knowledge, this is the first demonstration of a method to introduce targeted mutations in a member of the order Methanomicrobiales. For both organisms, mutants lacking structural components of the type IV-like pilus filament were defective for DNA uptake, demonstrating the importance of pili for natural transformation. Interestingly, competence could be induced in a noncompetent strain of M. maripaludis by expressing pilin genes from a replicative vector. These results expand the known natural competence pili to include examples from the archaeal domain and highlight the importance of pili for DNA uptake in diverse microbial organisms. IMPORTANCE Microbial organisms adapt and evolve by acquiring new genetic material through horizontal gene transfer. One way that this occurs is natural transformation, the direct uptake and genomic incorporation of environmental DNA by competent organisms. Archaea represent up to a third of the biodiversity on Earth, yet little is known about transformation in these organisms. Here, we provide the first characterization of a component of the archaeal DNA uptake machinery. We show that the type IV-like pilus is essential for natural transformation in two archaeal species. This suggests that pili are important for transformation across the tree of life and further expands our understanding of gene flow in archaea.


Author(s):  
Yanpeng Cheng ◽  
Wenjing Lei ◽  
Xiaoxia Wang ◽  
Zhi Tian ◽  
Haican Liu ◽  
...  

Four bacterial strains (LJ126T/S18 and Z-34T/S20) recovered from faecal samples of Tibetan antelopes on the Qinghai–Tibet Plateau of China were analysed using a polyphasic approach. All four isolates were aerobic, short rod-shaped, non-motile, Gram-stain-positive, acid-fast and fast-growing. Phylogenetic analyses based upon 16S rRNA and whole-genome sequences showed that the two pair of strains formed two distinct branches within the evolutionary radiation of the genus Mycolicibacterium . Strains LJ126T/S18 and Z-34T/S20 were most closely related to Mycolicibacterium austroafricanum CCUG 37667T, Mycobacterium aurum NCTC 10437T, Mycobacterium pyrenivorans DSM 44605T, Mycobacterium monacense JCM 15658T, Mycolicibacterium sarraceniae JCM 30395T, Mycolicibacterium tokaiense JCM 6373T and Mycobacterium murale JCM 13392T, but readily distinguished from the known species by a combination of chemotaxonomic and phenotypic features and by low average nucleotide identity values (74.4–84.9 %). Consequently, the two strain pairs are considered to represent different novel species of Mycolicibacterium for which the names Mycolicibacterium baixiangningiae sp. nov. and Mycolicibacterium mengxianglii sp. nov. are proposed, with LJ126T (=CGMCC 1.1992T=KCTC 49535T) and Z-34T (=CGMCC 1.1993T=DSM 106172T) as the respective type strains.


Author(s):  
Wen-Ming Chen ◽  
Ting-Hsuan Chang ◽  
Che-Chia Yang ◽  
Der-Shyan Sheu ◽  
Li-Cheng Jheng ◽  
...  

Two bacterial strains, designated HSP-20T and CCP-1T, isolated from freshwater habitats in Taiwan, were characterized by polyphasic taxonomy. Both strains were Gram-stain-negative, aerobic, non-motile and rod-shaped. Cells of strains HSP-20T and CCP-1T formed pink and dark red coloured colonies, respectively. Both strains contained bacteriochlorophyll a, and showed optimum growth under anaerobic conditions by photoheterotrophy, but no growth by photoautotrophy. Phylogenetic analyses based on 16S rRNA gene and whole-genome sequences indicated that both strains belonged to the genus Rhodobacter . Analysis of 16S rRNA gene sequences showed that strains HSP-20T and CCP-1T shared 98.3 % sequence similarity and were closely related to Rhodobacter tardus CYK-10T (96.0 %) and Rhodobacter flagellatus SYSU G03088T (96.0 %), respectively. Both strains shared common chemotaxonomic characteristics including Q-10 as the major isoprenoid quinone, C18 : 1  ω7c as the predominant fatty acid, and phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as the main polar lipids. The DNA G+C content of both strains was 66.2 mol%. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between these two novel isolates and their closest relatives were below the cut-off values of 95–96, 90 and 70 %, respectively, used for species demarcation. On the basis of phenotypic and genotypic properties and phylogenetic inference, both strains should be classified as novel species within the genus Rhodobacter , for which the names Rhodobacter amnigenus sp. nov. (=BCRC 81193T=LMG 31334T) and Rhodobacter ruber sp. nov. (=BCRC 81189T=LMG 31335T) are proposed.


2012 ◽  
Vol 56 (5) ◽  
pp. 2619-2626 ◽  
Author(s):  
Arturo Rodríguez-Blanco ◽  
Manuel L. Lemos ◽  
Carlos R. Osorio

ABSTRACTThe presence of SXT/R391-related integrating conjugative elements (ICEs) in bacterial strains isolated from fish obtained from marine aquaculture environments in 2001 to 2010 in the northwestern Iberian Peninsula was studied. ICEs were detected in 12 strains taxonomically related toVibrio scophthalmi(3 strains),Vibrio splendidus(5 strains),Vibrio alginolyticus(1 strain),Shewanella haliotis(1 strain), andEnterovibrio nigricans(2 strains), broadening the known host range able to harbor SXT/R391-like ICEs. Variable DNA regions, which confer element-specific properties to ICEs of this family, were characterized. One of the ICEs encoded antibiotic resistance functions in variable region III, consisting of a tetracycline resistance locus. Interestingly, hot spot 4 included genes providing resistance to rifampin (ICEVspPor2 and ICEValPor1) and quaternary ammonium compounds (QACs) (ICEEniSpa1), and variable region IV included a mercury resistance operon (ICEVspSpa1 and ICEEniSpa1). The S exclusion group was more represented than the R exclusion group, accounting for two-thirds of the total ICEs. Mating experiments allowed ICE mobilization toEscherichia colistrains, showing the corresponding transconjugants' rifampin, mercury, and QAC resistance. These results show the first evidence of ICEs providing rifampin and QAC resistances, suggesting that these mobile genetic elements contribute to the dissemination of antimicrobial, heavy metal, and QAC resistance determinants in aquaculture environments.


Author(s):  
Mingxia Zhang ◽  
Anzhang Li ◽  
Shuaishuai Xu ◽  
Meng Chen ◽  
Qing Yao ◽  
...  

Two novel bacterial strains, designated as DN00404T and DN04309T, were isolated from aquaculture water and characterized by using a polyphasic taxonomic approach. Cells of strains DN00404T and DN04309T were Gram-stain-negative, aerobic, non-motile, oxidase-positive and catalase-positive. Cells of DN00404T were short rod-shaped and those of DN04309T were long rod-shaped. Strain DN00404T was found to grow at 15–37 °C (optimum, 25–30 °C), at pH 6.0–11.0 (optimum, pH 7.5) and in 0–2.0 % (w/v) NaCl (optimum, 1.0 %). Strain DN04309T was found to grow at 15–45 °C (optimum, 20–37 °C), at pH 5.5–11.0 (optimum, 7.5) and in 0–4.0 % (w/v) NaCl (optimum, 0.5 %). Phylogenetic analyses based on 16S rRNA gene and genome sequences revealed that the two strains belonged to the genus Sphingobacterium and were distinct from all known species of this genus. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the two strains and between each of the two strains and related type strains of this genus were well below the recognized thresholds of 95.0–96.0 % ANI and 70.0 % dDDH for species delineation. The genomic DNA G+C contents of strains DN00404T and DN04309T were 41.6 and 36.0 mol%, respectively. The respiratory quinone in both strains was identified as MK-7, and their major fatty acids were iso-C15 : 0 and summed feature 3 (C16 : 1  ω6c and/or C16 : 1  ω7c), which were similar to those of other species of this genus. The two major fatty acids C16 : 0 and iso-C17 : 0 3-OH were also found in strain DN00404T. Based on genotypic and phenotypic characteristics, two novel species of the genus Sphingobacterium are proposed: Sphingobacterium micropteri sp. nov. with DN00404T (=GDMCC 1.1865T=KACC 21924T) as the type strain and Sphingobacterium litopenaei sp. nov. with DN04309T (=GDMCC 1.1984T=KCTC 82348T) as the type strain.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1492-1498 ◽  
Author(s):  
Kimberly S. Bowman ◽  
M. Fernanda Nobre ◽  
Milton S. da Costa ◽  
Fred A. Rainey ◽  
William M. Moe

Two strictly anaerobic bacterial strains, designated IP3-3T and SBP-1, were isolated from groundwater contaminated by chlorinated alkanes and alkenes at a Superfund Site located near Baton Rouge, Louisiana (USA). Both strains reductively dehalogenate a variety of polychlorinated aliphatic alkanes, including 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane and 1,2,3-trichloropropane, when provided with hydrogen as the electron donor. To clarify their taxonomic position, strains IP3-3T and SBP-1 were characterized using a polyphasic approach. Both IP3-3T and SBP-1 are mesophilic, non-spore-forming, non-motile and Gram-stain-negative. Cells of both strains are irregular cocci with diameters of 0.4–1.1 µm. Both are resistant to ampicillin and vancomycin. The genomic DNA G+C contents of strains IP3-3T and SBP-1 are 55.5±0.4 and 56.2±0.2 mol% (HPLC), respectively. Major cellular fatty acids include C18 : 1ω9c, C16 : 0, C14 : 0 and C16 : 1ω9c. 16S rRNA gene sequence based phylogenetic analyses indicated that the strains cluster within the phylum Chloroflexi most closely related to but distinct from the species Dehalogenimonas lykanthroporepellens (96.2 % pairwise similarity) and Dehalococcoides mccartyi (90.6 % pairwise similarity). Physiological and chemotaxonomic traits as well as phylogenetic analysis support the conclusion that these strains represent a novel species within the genus Dehalogenimonas for which the name Dehalogenimonas alkenigignens sp. nov. is proposed. The type strain is IP3-3T ( = JCM 17062T = NRRL B-59545T).


Sign in / Sign up

Export Citation Format

Share Document