scholarly journals The Mycobacterium tuberculosis sRNA F6 Modifies Expression of Essential Chaperonins, GroEL2 and GroES

Author(s):  
Joanna Houghton ◽  
Angela Rodgers ◽  
Graham Rose ◽  
Alexandre D’Halluin ◽  
Terry Kipkorir ◽  
...  

Control of gene expression via small regulatory RNAs (sRNAs) is poorly understood in one of the most successful pathogens, Mycobacterium tuberculosis . Here, we present an in-depth characterization of the sRNA F6, including its expression in different infection models and the differential gene expression observed upon deletion of the sRNA.

2011 ◽  
Vol 77 (10) ◽  
pp. 3406-3412 ◽  
Author(s):  
Gino Vrancken ◽  
Luc De Vuyst ◽  
Tom Rimaux ◽  
Joke Allemeersch ◽  
Stefan Weckx

ABSTRACTSourdough is a very competitive and challenging environment for microorganisms. Usually, a stable microbiota composed of lactic acid bacteria (LAB) and yeasts dominates this ecosystem. Although sourdough is rich in carbohydrates, thus providing an ideal environment for microorganisms to grow, its low pH presents a particular challenge. The nature of the adaptation to this low pH was investigated forLactobacillus plantarumIMDO 130201, an isolate from a laboratory wheat sourdough fermentation. Batch fermentations were carried out in wheat sourdough simulation medium, and total RNA was isolated from mid-exponential-growth-phase cultures, followed by differential gene expression analysis using a LAB functional gene microarray. At low pH values, an increased expression of genes involved in peptide and amino acid metabolism was found as well as that of genes involved in plantaricin production and lipoteichoic acid biosynthesis. The results highlight cellular mechanisms that allowL. plantarumto function at a low environmental pH.


2014 ◽  
Vol 2 ◽  
pp. 121-130 ◽  
Author(s):  
Monica L. Rojas-Peña ◽  
Rene Olivares-Navarrete ◽  
Sharon Hyzy ◽  
Dalia Arafat ◽  
Zvi Schwartz ◽  
...  

2015 ◽  
Vol 8 (3) ◽  
pp. 311-321 ◽  
Author(s):  
N. V. Welham ◽  
C. Ling ◽  
J. A. Dawson ◽  
C. Kendziorski ◽  
S. L. Thibeault ◽  
...  

2016 ◽  
Vol 80 (4) ◽  
pp. 1029-1057 ◽  
Author(s):  
Ruben A. T. Mars ◽  
Pierre Nicolas ◽  
Emma L. Denham ◽  
Jan Maarten van Dijl

SUMMARYBacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules includetrans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such asEscherichia coliandSalmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacteriumBacillus subtilis. A recent study identified 1,583 putative regulatory RNAs inB. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation inB. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation inB. subtilismostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs inB. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions inB. subtilis.


Sign in / Sign up

Export Citation Format

Share Document