scholarly journals Combining Colistin with Furanone C-30 Rescues Colistin Resistance of Gram-Negative Bacteria in Vitro and in Vivo

Author(s):  
Ying Zhang ◽  
Yishuai Lin ◽  
Xiaodong Zhang ◽  
Liqiong Chen ◽  
Chunyan Xu ◽  
...  

Colistin is among the few antibiotics effective against multidrug-resistant Gram-negative bacteria (GNB) clinical isolates. However, colistin-resistant GNB strains have emerged in recent years.

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Janine N. Copp ◽  
Daniel Pletzer ◽  
Alistair S. Brown ◽  
Joris Van der Heijden ◽  
Charlotte M. Miton ◽  
...  

ABSTRACT One avenue to combat multidrug-resistant Gram-negative bacteria is the coadministration of multiple drugs (combination therapy), which can be particularly promising if drugs synergize. The identification of synergistic drug combinations, however, is challenging. Detailed understanding of antibiotic mechanisms can address this issue by facilitating the rational design of improved combination therapies. Here, using diverse biochemical and genetic assays, we examine the molecular mechanisms of niclosamide, a clinically approved salicylanilide compound, and demonstrate its potential for Gram-negative combination therapies. We discovered that Gram-negative bacteria possess two innate resistance mechanisms that reduce their niclosamide susceptibility: a primary mechanism mediated by multidrug efflux pumps and a secondary mechanism of nitroreduction. When efflux was compromised, niclosamide became a potent antibiotic, dissipating the proton motive force (PMF), increasing oxidative stress, and reducing ATP production to cause cell death. These insights guided the identification of diverse compounds that synergized with salicylanilides when coadministered (efflux inhibitors, membrane permeabilizers, and antibiotics that are expelled by PMF-dependent efflux), thus suggesting that salicylanilide compounds may have broad utility in combination therapies. We validate these findings in vivo using a murine abscess model, where we show that niclosamide synergizes with the membrane permeabilizing antibiotic colistin against high-density infections of multidrug-resistant Gram-negative clinical isolates. We further demonstrate that enhanced nitroreductase activity is a potential route to adaptive niclosamide resistance but show that this causes collateral susceptibility to clinical nitro-prodrug antibiotics. Thus, we highlight how mechanistic understanding of mode of action, innate/adaptive resistance, and synergy can rationally guide the discovery, development, and stewardship of novel combination therapies. IMPORTANCE There is a critical need for more-effective treatments to combat multidrug-resistant Gram-negative infections. Combination therapies are a promising strategy, especially when these enable existing clinical drugs to be repurposed as antibiotics. We examined the mechanisms of action and basis of innate Gram-negative resistance for the anthelmintic drug niclosamide and subsequently exploited this information to demonstrate that niclosamide and analogs kill Gram-negative bacteria when combined with antibiotics that inhibit drug efflux or permeabilize membranes. We confirm the synergistic potential of niclosamide in vitro against a diverse range of recalcitrant Gram-negative clinical isolates and in vivo in a mouse abscess model. We also demonstrate that nitroreductases can confer resistance to niclosamide but show that evolution of these enzymes for enhanced niclosamide resistance confers a collateral sensitivity to other clinical antibiotics. Our results highlight how detailed mechanistic understanding can accelerate the evaluation and implementation of new combination therapies.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Marguerite L. Monogue ◽  
Masakatsu Tsuji ◽  
Yoshinori Yamano ◽  
Roger Echols ◽  
David P. Nicolau

ABSTRACT Cefiderocol (S-649266) is a novel siderophore cephalosporin with potent in vitro activity against clinically encountered multidrug-resistant (MDR) Gram-negative isolates; however, its spectrum of antibacterial activity against these difficult-to-treat isolates remains to be fully explored in vivo. Here, we evaluated the efficacy of cefiderocol humanized exposures in a neutropenic murine thigh model to support a suitable MIC breakpoint. Furthermore, we compared cefiderocol's efficacy with humanized exposures of meropenem and cefepime against a subset of these phenotypically diverse isolates. Ninety-five Gram-negative isolates were studied. Efficacy was determined as the change in log10 CFU at 24 h compared with 0-h controls. Bacterial stasis or ≥1 log reduction in 67 isolates with MICs of ≤4 μg/ml was noted in 77, 88, and 85% of Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa, respectively. For isolates with MICs of ≥8 μg/ml, bacterial stasis or ≥1 log10 reduction was observed in only 2 of 28 (8 Enterobacteriaceae, 19 A. baumannii, and 1 P. aeruginosa) strains. Against highly resistant meropenem and cefepime organisms, cefiderocol maintained its in vivo efficacy. Overall, humanized exposures of cefiderocol produced similar reductions in bacterial density for organisms with MICs of ≤4 μg/ml, whereas isolates with MICs of ≥8 μg/ml generally displayed bacterial growth in the presence of the compound. Data derived in the current study will assist with the delineation of MIC susceptibility breakpoints for cefiderocol against these important nosocomial Gram-negative pathogens; however, additional clinical data are required to substantiate these observations.


2019 ◽  
Vol 221 (4) ◽  
pp. 618-626 ◽  
Author(s):  
Leon G Leanse ◽  
Pu-Ting Dong ◽  
Xueping S Goh ◽  
Min Lu ◽  
Ji-Xin Cheng ◽  
...  

Abstract Background Antimicrobial resistance is a significant concern to public health, and there is a pressing need to develop novel antimicrobial therapeutic modalities. Methods In this study, we investigated the capacity for quinine hydrochloride (Q-HCL) to enhance the antimicrobial effects of antimicrobial blue light ([aBL] 405 nm wavelength) against multidrug-resistant (MDR) Gram-negative bacteria in vitro and in vivo. Results Our findings demonstrated the significant improvement in the inactivation of MDR Pseudomonas aeruginosa and Acinetobacter baumannii (planktonic cells and biofilms) when aBL was illuminated during Q-HCL exposure. Furthermore, the addition of Q-HCL significantly potentiated the antimicrobial effects of aBL in a mouse skin abrasion infection model. In addition, combined exposure of aBL and Q-HCL did not result in any significant apoptosis when exposed to uninfected mouse skin. Conclusions In conclusion, aBL in combination with Q-HCL may offer a novel approach for the treatment of infections caused by MDR bacteria.


2017 ◽  
Vol 66 (4) ◽  
pp. 533-536 ◽  
Author(s):  
Moreno Bondi ◽  
Anna Mazzini ◽  
Simona de Niederhäusern ◽  
Ramona Iseppi ◽  
Patrizia Messi

The authors studied the in vitro antibacterial activity of the photo-activated porphyrin meso-tri(N-methyl-pyridyl), mono(N-tetradecyl-pyridyl)porphine (C14) against four multidrug-resistant bacteria: Staphylococcus aureus, Enterococcus faecalis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative). Using 10 μg/ml of porphyrin and 60 sec irradiation we observed the remarkable susceptibility of S. aureus and E. faecalis to treatment while, under the same conditions, E. coli and P. aeruginosa showed very low susceptibility. In a later stage, suspensions of Gram-negative bacteria were processed with EDTA before photo-activation, obtaining a significant decrease in viable counts. In view of the results, if the combination of low porphyrin concentrations and short irradiation times will be effective in vivo also, this approach could be a possible alternative to antibiotics, in particular against localized infections due to multidrug-resistant microorganisms.


2020 ◽  
Author(s):  
Axel B. Janssen ◽  
Dennis J. Doorduijn ◽  
Grant Mills ◽  
Malbert R.C. Rogers ◽  
Marc J.M. Bonten ◽  
...  

AbstractThe increasing prevalence of multidrug-resistant Gram-negative opportunistic pathogens, including Klebsiella pneumoniae, has led to a resurgence in the use of colistin as a last-resort drug. Colistin is a cationic lipopeptide antibiotic that selectively acts on Gram-negative bacteria through electrostatic interactions with anionic phosphate groups of the lipid A moiety of lipopolysaccharides (LPS). Colistin resistance in K. pneumoniae is mediated through loss of these phosphate groups, or modification with cationic groups (e.g. 4-amino-4-deoxy-L-arabinose (L-Ara4N), or phosphoethanolamine), but also hydroxylation of acyl-groups of lipid A. Here, we study the in vitro evolutionary trajectories towards colistin resistance in clinical K. pneumoniae complex strains (three K. pneumoniae sensu stricto strains and one K. variicola subsp. variicola strain) and their impact on fitness and virulence characteristics.Through population sequencing during the in vitro evolution experiment, we found that resistance develops through a combination of single nucleotide polymorphisms (SNPs), insertion and deletions (indels), and the integration of insertion sequence (IS) elements, affecting genes associated with LPS biosynthesis and modification, and capsule structures. The development of colistin resistance decreased the maximum growth rate of one K. pneumoniae sensu stricto strain, but not in the other three K. pneumoniae sensu lato strains. Colistin-resistant strains had lipid A modified through hydroxylation, palmitoylation, and L-Ara4N addition. Colistin-resistant K. pneumoniae sensu stricto strains exhibited cross-resistance to LL-37, in contrast to the K. variicola subsp. variicola strain that did not change in susceptibility to LL-37. Virulence, as determined in a Caenorhabditis elegans survival assay, was higher in two colistin-resistant strains.Our study suggests that nosocomial K. pneumoniae complex strains can rapidly develop colistin resistance de novo through diverse evolutionary trajectories upon exposure to colistin. This effectively shortens the lifespan of this last-resort antibiotic for the treatment of infections with multidrug-resistant Klebsiella.Author summaryBacteria that frequently cause infections in hospitalised patients are becoming increasingly resistant to antibiotics. Colistin is a positively charged antibiotic that is used for the treatment of infections with multidrug-resistant Gram-negative bacteria. Colistin acts by specifically interacting with the negatively charged LPS molecule in the outer membrane of Gram-negative bacteria. Colistin resistance is mostly mediated through modification of LPS to reduce its negative charge. Here, we use a laboratory evolution experiment to show that strains belonging to the Klebsiella pneumoniae complex, a common cause of multidrug-resistant hospital-acquired infections, can rapidly accumulate mutations that reduce the negative charge of LPS without an appreciable loss of fitness. Colistin resistance can lead to cross-resistance to an antimicrobial peptide of the human innate immune system, but can increase susceptibility to serum, and virulence in a nematode model. These findings show that extensively resistant K. pneumoniae complex strains may rapidly develop resistance to the last-resort antibiotic colistin via different evolutionary trajectories, while retaining their ability to cause infections.


Author(s):  
Janine N. Copp ◽  
Daniel Pletzer ◽  
Alistair S. Brown ◽  
Joris Van der Heijden ◽  
Charlotte M. Miton ◽  
...  

AbstractOne avenue to combat multidrug-resistant Gram-negative bacteria is the co-administration of multiple drugs (combination therapy), which can be particularly promising if drugs synergize. The identification of synergistic drug combinations, however, is challenging. Detailed understanding of antibiotic mechanisms can address this issue by facilitating the rational design of improved combination therapies. Here, using diverse biochemical and genetic assays, we reveal the molecular mechanisms of niclosamide, a clinically-approved salicylanilide compound, and demonstrate its potential for Gram-negative combination therapies. We discovered that Gram-negative bacteria possess two innate resistance mechanisms that reduce their niclosamide susceptibility: a primary mechanism mediated by multidrug efflux pumps and a secondary mechanism of nitroreduction. When efflux was compromised, niclosamide became a potent antibiotic, dissipating the proton motive force (PMF), increasing oxidative stress and reducing ATP production to cause cell death. These insights guided the identification of diverse compounds that synergized with salicylanilides when co-administered (efflux inhibitors, membrane permeabilizers, and antibiotics that are expelled by PMF-dependent efflux), thus suggesting that salicylanilide compounds may have broad utility in combination therapies. We validate these findings in vivo using a murine abscess model, where we show that niclosamide synergizes with the membrane permeabilizing antibiotic colistin against high-density infections of multidrug-resistant Gram-negative clinical isolates. We further demonstrate that enhanced nitroreductase activity is a potential route to adaptive niclosamide resistance but show that this causes collateral susceptibility to clinical nitro-prodrug antibiotics. Thus, we highlight how mechanistic understanding of mode of action, innate/adaptive resistance, and synergy can rationally guide the discovery, development and stewardship of novel combination therapies.ImportanceThere is a critical need for more effective treatments to combat multidrug-resistant Gram-negative infections. Combination therapies are a promising strategy, especially when these enable existing clinical drugs to be repurposed as antibiotics. We reveal the mechanisms of action and basis of innate Gram-negative resistance for the anthelmintic drug niclosamide, and subsequently exploit this information to demonstrate that niclosamide and analogs kill Gram-negative bacteria when combined with antibiotics that inhibit drug efflux or permeabilize membranes. We confirm the synergistic potential of niclosamide in vitro against a diverse range of recalcitrant Gram-negative clinical isolates, and in vivo in a mouse abscess model. We also demonstrate that nitroreductases can confer resistance to niclosamide, but show that evolution of these enzymes for enhanced niclosamide resistance confers a collateral sensitivity to other clinical antibiotics. Our results highlight how detailed mechanistic understanding can accelerate the evaluation and implementation of new combination therapies.


2015 ◽  
Vol 59 (4) ◽  
pp. 1983-1991 ◽  
Author(s):  
Rolf Lood ◽  
Benjamin Y. Winer ◽  
Adam J. Pelzek ◽  
Roberto Diez-Martinez ◽  
Mya Thandar ◽  
...  

ABSTRACTAcinetobacter baumannii, a Gram-negative multidrug-resistant (MDR) bacterium, is now recognized as one of the more common nosocomial pathogens. Because most clinical isolates are found to be multidrug resistant, alternative therapies need to be developed to control this pathogen. We constructed a bacteriophage genomic library based on prophages induced from 13A. baumanniistrains and screened it for genes encoding bacteriolytic activity. Using this approach, we identified 21 distinct lysins with different activities and sequence diversity that were capable of killingA. baumannii. The lysin (PlyF307) displaying the greatest activity was further characterized and was shown to efficiently kill (>5-log-unit decrease) all testedA. baumanniiclinical isolates. Treatment with PlyF307 was able to significantly reduce planktonic and biofilmA. baumanniibothin vitroandin vivo. Finally, PlyF307 rescued mice from lethalA. baumanniibacteremia and as such represents the first highly active therapeutic lysin specific for Gram-negative organisms in an array of native lysins found inAcinetobacterphage.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2004 ◽  
Vol 48 (1) ◽  
pp. 73-75 ◽  
Author(s):  
Nicolas C. Issa ◽  
Mark S. Rouse ◽  
Kerryl E. Piper ◽  
Walter R. Wilson ◽  
James M. Steckelberg ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Dalila Mil-Homens ◽  
Maria Martins ◽  
José Barbosa ◽  
Gabriel Serafim ◽  
Maria J. Sarmento ◽  
...  

Klebsiella pneumoniae, one of the most common pathogens found in hospital-acquired infections, is often resistant to multiple antibiotics. In fact, multidrug-resistant (MDR) K. pneumoniae producing KPC or OXA-48-like carbapenemases are recognized as a serious global health threat. In this sense, we evaluated the virulence of K. pneumoniae KPC(+) or OXA-48(+) aiming at potential antimicrobial therapeutics. K. pneumoniae carbapenemase (KPC) and the expanded-spectrum oxacillinase OXA-48 isolates were obtained from patients treated in medical care units in Lisbon, Portugal. The virulence potential of the K. pneumonia clinical isolates was tested using the Galleria mellonella model. For that, G. mellonella larvae were inoculated using patients KPC(+) and OXA-48(+) isolates. Using this in vivo model, the KPC(+) K. pneumoniae isolates showed to be, on average, more virulent than OXA-48(+). Virulence was found attenuated when a low bacterial inoculum (one magnitude lower) was tested. In addition, we also report the use of a synthetic polycationic oligomer (L-OEI-h) as a potential antimicrobial agent to fight infectious diseases caused by MDR bacteria. L-OEI-h has a broad-spectrum antibacterial activity and exerts a significantly bactericidal activity within the first 5-30 min treatment, causing lysis of the cytoplasmic membrane. Importantly, the polycationic oligomer showed low toxicity against in vitro models and no visible cytotoxicity (measured by survival and health index) was noted on the in vivo model (G. mellonella), thus L-OEI-h is foreseen as a promising polymer therapeutic for the treatment of MDR K. pneumoniae infections.


Sign in / Sign up

Export Citation Format

Share Document