scholarly journals Mechanistic Understanding Enables the Rational Design of Salicylanilide Combination Therapies for Gram-Negative Infections

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Janine N. Copp ◽  
Daniel Pletzer ◽  
Alistair S. Brown ◽  
Joris Van der Heijden ◽  
Charlotte M. Miton ◽  
...  

ABSTRACT One avenue to combat multidrug-resistant Gram-negative bacteria is the coadministration of multiple drugs (combination therapy), which can be particularly promising if drugs synergize. The identification of synergistic drug combinations, however, is challenging. Detailed understanding of antibiotic mechanisms can address this issue by facilitating the rational design of improved combination therapies. Here, using diverse biochemical and genetic assays, we examine the molecular mechanisms of niclosamide, a clinically approved salicylanilide compound, and demonstrate its potential for Gram-negative combination therapies. We discovered that Gram-negative bacteria possess two innate resistance mechanisms that reduce their niclosamide susceptibility: a primary mechanism mediated by multidrug efflux pumps and a secondary mechanism of nitroreduction. When efflux was compromised, niclosamide became a potent antibiotic, dissipating the proton motive force (PMF), increasing oxidative stress, and reducing ATP production to cause cell death. These insights guided the identification of diverse compounds that synergized with salicylanilides when coadministered (efflux inhibitors, membrane permeabilizers, and antibiotics that are expelled by PMF-dependent efflux), thus suggesting that salicylanilide compounds may have broad utility in combination therapies. We validate these findings in vivo using a murine abscess model, where we show that niclosamide synergizes with the membrane permeabilizing antibiotic colistin against high-density infections of multidrug-resistant Gram-negative clinical isolates. We further demonstrate that enhanced nitroreductase activity is a potential route to adaptive niclosamide resistance but show that this causes collateral susceptibility to clinical nitro-prodrug antibiotics. Thus, we highlight how mechanistic understanding of mode of action, innate/adaptive resistance, and synergy can rationally guide the discovery, development, and stewardship of novel combination therapies. IMPORTANCE There is a critical need for more-effective treatments to combat multidrug-resistant Gram-negative infections. Combination therapies are a promising strategy, especially when these enable existing clinical drugs to be repurposed as antibiotics. We examined the mechanisms of action and basis of innate Gram-negative resistance for the anthelmintic drug niclosamide and subsequently exploited this information to demonstrate that niclosamide and analogs kill Gram-negative bacteria when combined with antibiotics that inhibit drug efflux or permeabilize membranes. We confirm the synergistic potential of niclosamide in vitro against a diverse range of recalcitrant Gram-negative clinical isolates and in vivo in a mouse abscess model. We also demonstrate that nitroreductases can confer resistance to niclosamide but show that evolution of these enzymes for enhanced niclosamide resistance confers a collateral sensitivity to other clinical antibiotics. Our results highlight how detailed mechanistic understanding can accelerate the evaluation and implementation of new combination therapies.

Author(s):  
Janine N. Copp ◽  
Daniel Pletzer ◽  
Alistair S. Brown ◽  
Joris Van der Heijden ◽  
Charlotte M. Miton ◽  
...  

AbstractOne avenue to combat multidrug-resistant Gram-negative bacteria is the co-administration of multiple drugs (combination therapy), which can be particularly promising if drugs synergize. The identification of synergistic drug combinations, however, is challenging. Detailed understanding of antibiotic mechanisms can address this issue by facilitating the rational design of improved combination therapies. Here, using diverse biochemical and genetic assays, we reveal the molecular mechanisms of niclosamide, a clinically-approved salicylanilide compound, and demonstrate its potential for Gram-negative combination therapies. We discovered that Gram-negative bacteria possess two innate resistance mechanisms that reduce their niclosamide susceptibility: a primary mechanism mediated by multidrug efflux pumps and a secondary mechanism of nitroreduction. When efflux was compromised, niclosamide became a potent antibiotic, dissipating the proton motive force (PMF), increasing oxidative stress and reducing ATP production to cause cell death. These insights guided the identification of diverse compounds that synergized with salicylanilides when co-administered (efflux inhibitors, membrane permeabilizers, and antibiotics that are expelled by PMF-dependent efflux), thus suggesting that salicylanilide compounds may have broad utility in combination therapies. We validate these findings in vivo using a murine abscess model, where we show that niclosamide synergizes with the membrane permeabilizing antibiotic colistin against high-density infections of multidrug-resistant Gram-negative clinical isolates. We further demonstrate that enhanced nitroreductase activity is a potential route to adaptive niclosamide resistance but show that this causes collateral susceptibility to clinical nitro-prodrug antibiotics. Thus, we highlight how mechanistic understanding of mode of action, innate/adaptive resistance, and synergy can rationally guide the discovery, development and stewardship of novel combination therapies.ImportanceThere is a critical need for more effective treatments to combat multidrug-resistant Gram-negative infections. Combination therapies are a promising strategy, especially when these enable existing clinical drugs to be repurposed as antibiotics. We reveal the mechanisms of action and basis of innate Gram-negative resistance for the anthelmintic drug niclosamide, and subsequently exploit this information to demonstrate that niclosamide and analogs kill Gram-negative bacteria when combined with antibiotics that inhibit drug efflux or permeabilize membranes. We confirm the synergistic potential of niclosamide in vitro against a diverse range of recalcitrant Gram-negative clinical isolates, and in vivo in a mouse abscess model. We also demonstrate that nitroreductases can confer resistance to niclosamide, but show that evolution of these enzymes for enhanced niclosamide resistance confers a collateral sensitivity to other clinical antibiotics. Our results highlight how detailed mechanistic understanding can accelerate the evaluation and implementation of new combination therapies.


Author(s):  
Ying Zhang ◽  
Yishuai Lin ◽  
Xiaodong Zhang ◽  
Liqiong Chen ◽  
Chunyan Xu ◽  
...  

Colistin is among the few antibiotics effective against multidrug-resistant Gram-negative bacteria (GNB) clinical isolates. However, colistin-resistant GNB strains have emerged in recent years.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuan Liu ◽  
Ziwen Tong ◽  
Jingru Shi ◽  
Yuqian Jia ◽  
Tian Deng ◽  
...  

AbstractAntimicrobial resistance has been a growing concern that gradually undermines our tradition treatment regimens. The fact that few antibacterial drugs with new scaffolds or targets have been approved in the past two decades aggravates this crisis. Repurposing drugs as potent antibiotic adjuvants offers a cost-effective strategy to mitigate the development of resistance and tackle the increasing infections by multidrug-resistant (MDR) bacteria. Herein, we found that benzydamine, a widely used non‐steroidal anti‐inflammatory drug in clinic, remarkably potentiated broad-spectrum antibiotic-tetracyclines activity against a panel of clinically important pathogens, including MRSA, VRE, MCRPEC and tet(X)-positive Gram-negative bacteria. Mechanistic studies showed that benzydamine dissipated membrane potential (▵Ψ) in both Gram-positive and Gram-negative bacteria, which in turn upregulated the transmembrane proton gradient (▵pH) and promoted the uptake of tetracyclines. Additionally, benzydamine exacerbated the oxidative stress by triggering the production of ROS and suppressing GAD system-mediated oxidative defensive. This mode of action explains the great bactericidal activity of the doxycycline-benzydamine combination against different metabolic states of bacteria involve persister cells. As a proof-of-concept, the in vivo efficacy of this drug combination was evidenced in multiple animal infection models. These findings indicate that benzydamine is a potential tetracyclines adjuvant to address life-threatening infections by MDR bacteria.


Author(s):  
Renru Han ◽  
Xuelin Yang ◽  
Yang Yang ◽  
Yan Guo ◽  
Dandan Yin ◽  
...  

Multidrug-resistant Gram-negative bacteria, especially for extended-spectrum β-lactamases-producing and carbapenemase-producing Enterobacterales , are disseminating rapidly around the world. Treatment options for these infections are limited, which prompt the development of novel or combinational therapies to combat the infections caused by multidrug-resistant pathogens.


Metallomics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2033-2042 ◽  
Author(s):  
Paul Güntzel ◽  
Christoph Nagel ◽  
Jeanette Weigelt ◽  
Jono W. Betts ◽  
Calum A. Pattrick ◽  
...  

Antibacterial activity of four Mn(CO)3 complexes on multidrug-resistant clinical isolates of A. baumannii and P. aeruginosa correlated with lipophilicity and increase in ATP release. Absence of host toxicity in G. mellonella was combined with effective bacterial clearance.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
José Manuel Ortiz de la Rosa ◽  
Patrice Nordmann ◽  
Laurent Poirel

ABSTRACT Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Baohua Zhao ◽  
He Wang ◽  
Wenjing Dong ◽  
Shaowen Cheng ◽  
Haisheng Li ◽  
...  

Abstract Background Infectious diseases caused by multidrug-resistant (MDR) bacteria, especially MDR Gram-negative strains, have become a global public health challenge. Multifunctional nanomaterials for controlling MDR bacterial infections via eradication of planktonic bacteria and their biofilms are of great interest. Results In this study, we developed a multifunctional platform (TG-NO-B) with single NIR laser-triggered PTT and NO release for synergistic therapy against MDR Gram-negative bacteria and their biofilms. When located at the infected sites, TG-NO-B was able to selectively bind to the surfaces of Gram-negative bacterial cells and their biofilm matrix through covalent coupling between the BA groups of TG-NO-B and the bacterial LPS units, which could greatly improve the antibacterial efficiency, and reduce side damages to ambient normal tissues. Upon single NIR laser irradiation, TG-NO-B could generate hyperthermia and simultaneously release NO, which would synergistically disrupt bacterial cell membrane, further cause leakage and damage of intracellular components, and finally induce bacteria death. On one hand, the combination of NO and PTT could largely improve the antibacterial efficiency. On the other hand, the bacterial cell membrane damage could improve the permeability and sensitivity to heat, decrease the photothermal temperature and avoid damages caused by high temperature. Moreover, TG-NO-B could be effectively utilized for synergistic therapy against the in vivo infections of MDR Gram-negative bacteria and their biofilms and accelerate wound healing as well as exhibit excellent biocompatibility both in vitro and in vivo. Conclusions Our study demonstrates that TG-NO-B can be considered as a promising alternative for treating infections caused by MDR Gram-negative bacteria and their biofilms.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Marguerite L. Monogue ◽  
Masakatsu Tsuji ◽  
Yoshinori Yamano ◽  
Roger Echols ◽  
David P. Nicolau

ABSTRACT Cefiderocol (S-649266) is a novel siderophore cephalosporin with potent in vitro activity against clinically encountered multidrug-resistant (MDR) Gram-negative isolates; however, its spectrum of antibacterial activity against these difficult-to-treat isolates remains to be fully explored in vivo. Here, we evaluated the efficacy of cefiderocol humanized exposures in a neutropenic murine thigh model to support a suitable MIC breakpoint. Furthermore, we compared cefiderocol's efficacy with humanized exposures of meropenem and cefepime against a subset of these phenotypically diverse isolates. Ninety-five Gram-negative isolates were studied. Efficacy was determined as the change in log10 CFU at 24 h compared with 0-h controls. Bacterial stasis or ≥1 log reduction in 67 isolates with MICs of ≤4 μg/ml was noted in 77, 88, and 85% of Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa, respectively. For isolates with MICs of ≥8 μg/ml, bacterial stasis or ≥1 log10 reduction was observed in only 2 of 28 (8 Enterobacteriaceae, 19 A. baumannii, and 1 P. aeruginosa) strains. Against highly resistant meropenem and cefepime organisms, cefiderocol maintained its in vivo efficacy. Overall, humanized exposures of cefiderocol produced similar reductions in bacterial density for organisms with MICs of ≤4 μg/ml, whereas isolates with MICs of ≥8 μg/ml generally displayed bacterial growth in the presence of the compound. Data derived in the current study will assist with the delineation of MIC susceptibility breakpoints for cefiderocol against these important nosocomial Gram-negative pathogens; however, additional clinical data are required to substantiate these observations.


2003 ◽  
Vol 376 (3) ◽  
pp. 801-805 ◽  
Author(s):  
Monique MALLÉA ◽  
Abdallah MAHAMOUD ◽  
Jacqueline CHEVALIER ◽  
Sandrine ALIBERT-FRANCO ◽  
Pierre BROUANT ◽  
...  

Over the last decade, MDR (multidrug resistance) has increased worldwide in microbial pathogens by efflux mechanisms, leading to treatment failures in human infections. Several Gram-negative bacteria efflux pumps have been described. These proteinaceous channels are capable of expelling structurally different drugs across the envelope and conferring antibiotic resistance in various bacterial pathogens. Combating antibiotic resistance is an urgency and the blocking of efflux pumps is an attractive response to the emergence of MDR phenotypes in infectious bacteria. In the present study, various alkylaminoquinolines were tested as potential inhibitors of drug transporters. We showed that alkylaminoquinolines are capable of restoring susceptibilities to structurally unrelated antibiotics in clinical isolates of MDR Gram-negative bacteria. Antibiotic efflux studies indicated that 7-nitro-8-methyl-4-[2´-(piperidino)ethyl]aminoquinoline acts as an inhibitor of the AcrAB–TolC efflux pump and restores a high level of intracellular drug concentration. Inhibitory activity of this alkylaminoquinoline is observed on clinical isolates showing different resistance phenotypes.


2019 ◽  
Vol 221 (4) ◽  
pp. 618-626 ◽  
Author(s):  
Leon G Leanse ◽  
Pu-Ting Dong ◽  
Xueping S Goh ◽  
Min Lu ◽  
Ji-Xin Cheng ◽  
...  

Abstract Background Antimicrobial resistance is a significant concern to public health, and there is a pressing need to develop novel antimicrobial therapeutic modalities. Methods In this study, we investigated the capacity for quinine hydrochloride (Q-HCL) to enhance the antimicrobial effects of antimicrobial blue light ([aBL] 405 nm wavelength) against multidrug-resistant (MDR) Gram-negative bacteria in vitro and in vivo. Results Our findings demonstrated the significant improvement in the inactivation of MDR Pseudomonas aeruginosa and Acinetobacter baumannii (planktonic cells and biofilms) when aBL was illuminated during Q-HCL exposure. Furthermore, the addition of Q-HCL significantly potentiated the antimicrobial effects of aBL in a mouse skin abrasion infection model. In addition, combined exposure of aBL and Q-HCL did not result in any significant apoptosis when exposed to uninfected mouse skin. Conclusions In conclusion, aBL in combination with Q-HCL may offer a novel approach for the treatment of infections caused by MDR bacteria.


Sign in / Sign up

Export Citation Format

Share Document