scholarly journals dnaJ : a New Approach to Identify Species within the Genus Enterobacter

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Enrique Hernandez-Alonso ◽  
Simon Barreault ◽  
Luis A. Augusto ◽  
Pierre Jatteau ◽  
Millie Villet ◽  
...  

We propose a new approach for Enterobacter species identification based on the diversity of the gene encoding the heat shock protein DnaJ. This new tool can be easily implemented in clinical laboratories in addition to identification by MALDI-TOF.

2017 ◽  
Vol 85 (8) ◽  
Author(s):  
Lucia Trotta ◽  
Kathleen Weigt ◽  
Katina Schinnerling ◽  
Anika Geelhaar-Karsch ◽  
Gerrit Oelkers ◽  
...  

ABSTRACT Classical Whipple's disease (CWD) is characterized by the lack of specific Th1 response toward Tropheryma whipplei in genetically predisposed individuals. The cofactor GrpE of heat shock protein 70 (Hsp70) from T. whipplei was previously identified as a B-cell antigen. We tested the capacity of Hsp70 and GrpE to elicit specific proinflammatory T-cell responses. Peripheral mononuclear cells from CWD patients and healthy donors were stimulated with T. whipplei lysate or recombinant GrpE or Hsp70 before levels of CD40L, CD69, perforin, granzyme B, CD107a, and gamma interferon (IFN-γ) were determined in T cells by flow cytometry. Upon stimulation with total bacterial lysate or recombinant GrpE or Hsp70 of T. whipplei, the proportions of activated effector CD4+ T cells, determined as CD40L+ IFN-γ+, were significantly lower in patients with CWD than in healthy controls; CD8+ T cells of untreated CWD patients revealed an enhanced activation toward unspecific stimulation and T. whipplei-specific degranulation, although CD69+ IFN-γ+ CD8+ T cells were reduced upon stimulation with T. whipplei lysate and recombinant T. whipplei-derived proteins. Hsp70 and its cofactor GrpE are immunogenic in healthy individuals, eliciting effective responses against T. whipplei to control bacterial spreading. The lack of specific T-cell responses against these T. whipplei-derived proteins may contribute to the pathogenesis of CWD.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Eugenia Bifeld ◽  
Stephan Lorenzen ◽  
Katharina Bartsch ◽  
Juan-José Vasquez ◽  
T. Nicolai Siegel ◽  
...  

ABSTRACT The 90-kDa heat shock protein (HSP90) of eukaryotes is a highly abundant and essential chaperone required for the maturation of regulatory and signal proteins. In the protozoan parasite Leishmania donovani, causative agent of the fatal visceral leishmaniasis, HSP90 activity is essential for cell proliferation and survival. Even more importantly, its inhibition causes life cycle progression from the insect stage to the pathogenic, mammalian stage. To unravel the molecular impact of HSP90 activity on the parasites’ gene expression, we performed a ribosome profiling analysis of L. donovani, comparing genome-wide protein synthesis patterns in the presence and absence of the HSP90-specific inhibitor radicicol and an ectopically expressed radicicol-resistant HSP90 variant. We find that ribosome-protected RNA faithfully maps open reading frames and represents 97% of the annotated protein-coding genes of L. donovani. Protein synthesis was found to correlate poorly with RNA steady-state levels, indicating a regulated translation as primary mechanism for HSP90-dependent gene expression. The results confirm inhibitory effects of HSP90 on the synthesis of Leishmania proteins that are associated with the pathogenic, intracellular stage of the parasite. Those include heat shock proteins, redox enzymes, virulence-enhancing surface proteins, proteolytic pathways, and a complete set of histones. Conversely, HSP90 promotes fatty acid synthesis enzymes. Complementing radicicol treatment with the radicicol-resistant HSP90rr variant revealed important off-target radicicol effects that control a large number of the above-listed proteins. Leishmania lacks gene-specific transcription regulation and relies on regulated translation instead. Our ribosome footprinting analysis demonstrates a controlling function of HSP90 in stage-specific protein synthesis but also significant, HSP90-independent effects of the inhibitor radicicol. IMPORTANCE Leishmania parasites cause severe illness in humans and animals. They exist in two developmental stages, insect form and mammalian form, which differ in shape and gene expression. By mapping and quantifying RNA fragments protected by protein synthesis complexes, we determined the rates of protein synthesis for >90% of all Leishmania proteins in response to the inhibition of a key regulatory protein, the 90-kDa heat shock protein. We find that Leishmania depends on a regulation of protein synthesis for controlling its gene expression and that heat shock protein 90 inhibition can trigger the developmental program from insect form to mammalian form of the pathogen.


Gene ◽  
1993 ◽  
Vol 126 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Hosokawa Nobuko ◽  
Takechi Hajime ◽  
Yokota Shinichi ◽  
Hirayoshi Kazunori ◽  
Nagata Kazuhiro

2019 ◽  
Author(s):  
Chengfeng Xiao ◽  
Danna Hull ◽  
Shuang Qiu ◽  
Joanna Yeung ◽  
Jie Zheng ◽  
...  

AbstractIt has been known for over 20 years that Drosophila melanogaster flies with twelve additional copies of the hsp70 gene encoding the 70 kDa heat shock protein lives longer after a non-lethal heat treatment. Since the heat treatment also induces the expression of additional heat shock proteins, the biological effect can be due either to HSP70 acting alone or in combination. This study used the UAS/GAL4 system to determine whether hsp70 is sufficient to affect the longevity and the resistance to thermal, oxidative or desiccation stresses of the whole organism. We observed that HSP70 expression in the nervous system or muscles has no effect on longevity or stress resistance but ubiquitous expression reduces the life span of males. We also observed that the down-regulation of Hsp70 using RNAi did not affect longevity.


2000 ◽  
Vol 46 (11) ◽  
pp. 981-991 ◽  
Author(s):  
T L Girvitz ◽  
P M Ouimet ◽  
M Kapoor

Heat shock protein 80 (Hsp80) of Neurospora crassa, a member of the stress-90 protein family, is a cytosolic molecular chaperone that interacts directly with Hsp70 to form a hetero-oligomeric complex. The complete nucleotide sequence of the gene encoding this protein, along with the 5'- and 3'-flanking DNA, is reported. The coding sequence is interrupted by two introns, 61 and 30 nucleotides, respectively, in length. The deduced amino acid sequence corresponds to a 695-residue polypeptide with a calculated molecular mass of 78 894 Da and an average pI of 4.94. Primer extension experiments demonstrated two transcription start sites, a major and a minor one. No sequence motifs resembling the standard eukaryotic heat shock elements were evident in the putative promoter region. Immunoblot analysis showed Hsp80 protein to be present in the mature, dormant conidia, while the hsp80 transcripts were not detected. Both the transcripts and the protein were present in the germinating conidia in the absence of externally applied stress.Key words: Hsp90, filamentous fungi, sequence, conidia, germination.


1985 ◽  
Vol 82 (11) ◽  
pp. 3726-3730 ◽  
Author(s):  
E. Czarnecka ◽  
W. B. Gurley ◽  
R. T. Nagao ◽  
L. A. Mosquera ◽  
J. L. Key

1991 ◽  
Vol 19 (16) ◽  
pp. 4552-4552 ◽  
Author(s):  
Karen Stevenson ◽  
Neil F. Inglis ◽  
Barbara Rae ◽  
William Donachie ◽  
J. Michael Sharp

1997 ◽  
Vol 94 (20) ◽  
pp. 10967-10972 ◽  
Author(s):  
C.-H. Yeh ◽  
P.-F. L. Chang ◽  
K.-W. Yeh ◽  
W.-C. Lin ◽  
Y.-M. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document