scholarly journals A Novel Trehalose Synthase for the Production of Trehalose and Trehalulose

Author(s):  
Neera Agarwal ◽  
Sudhir P. Singh

Trehalose is a rare sugar of high importance in biological research, with its property to stabilize cell membrane and proteins and protect the organism from drought. It is instrumental in the cryopreservation of human cells, e.g., sperm and blood stem cells.

2018 ◽  
Vol 46 (2) ◽  
pp. 117-127
Author(s):  
Somia Abd-Allah ◽  
El-Sayed Abdel-Aziz ◽  
Sabry Ali ◽  
Gamal El-Din Shams ◽  
Hesham Mohammed ◽  
...  

2020 ◽  
Vol 15 (3) ◽  
pp. 219-232
Author(s):  
Ifrah Anwar ◽  
Usman A. Ashfaq ◽  
Zeeshan Shokat

The liver is a vital organ for life and the only internal organ that is capable of natural regeneration. Although the liver has high regeneration capacity, excessive hepatocyte death can lead to liver failure. Various factors can lead to liver damage including drug abuse, some natural products, alcohol, hepatitis, and autoimmunity. Some models for studying liver injury are APAP-based model, Fas ligand (FasL), D-galactosamine/endotoxin (Gal/ET), Concanavalin A, and carbon tetrachloride-based models. The regeneration of the liver can be carried out using umbilical cord blood stem cells which have various advantages over other stem cell types used in liver transplantation. UCB-derived stem cells lack tumorigenicity, have karyotype stability and high immunomodulatory, low risk of graft versus host disease (GVHD), low risk of transmitting somatic mutations or viral infections, and low immunogenicity. They are readily available and their collection is safe and painless. This review focuses on recent development and modern trends in the use of umbilical cord stem cells for the regeneration of liver fibrosis.


2021 ◽  
Vol 22 (13) ◽  
pp. 6774
Author(s):  
Giedrė Skliutė ◽  
Raminta Baušytė ◽  
Veronika Borutinskaitė ◽  
Giedrė Valiulienė ◽  
Algirdas Kaupinis ◽  
...  

When looking for the causes and treatments of infertility, much attention is paid to one of the reproductive tissues—the endometrium. Therefore, endometrial stem cells are an attractive target for infertility studies in women of unexplained origin. Menstrual blood stem cells (MenSCs) are morphologically and functionally similar to cells derived directly from the endometrium; with dual expression of mesenchymal and embryonic cell markers, they proliferate and regenerate better than bone marrow mesenchymal stem cells. In addition, menstrual blood stem cells are extracted in a non-invasive and painless manner. In our study, we analyzed the characteristics and the potential for decidualization of menstrual blood stem cells isolated from healthy volunteers and women diagnosed with infertility. We demonstrated that MenSCs express CD44, CD166, CD16, CD15, BMSC, CD56, CD13 and HLA-ABC surface markers, have proliferative properties, and after induction of menstrual stem cell differentiation into epithelial direction, expression of genes related to decidualization (PRL, ESR, IGFBP and FOXO1) and angiogenesis (HIF1, VEGFR2 and VEGFR3) increased. Additionally, the p53, p21, H3K27me3 and HyperAcH4 proteins’ expression increased during MenSCs decidualization, they secrete proteins that are involved in the regulation of the actin cytoskeleton, estrogen and relaxin signaling pathways and the management of inflammatory processes. Our findings reveal the potential use of MenSCs for the treatment of reproductive disorders.


Sign in / Sign up

Export Citation Format

Share Document