Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozárovice granodiorite, Central Bohemian Pluton, Czech Republic

Author(s):  
Vojtěch Janoušek ◽  
D. R. Bowes ◽  
Colin J. R. Braithwaite ◽  
Graeme Rogers
Author(s):  
Vojtěch Janoušek ◽  
D. R. Bowes ◽  
Colin J. R. Braithwaite ◽  
Graeme Rogers

Textural and mineralogical features in the high-K calc-alkaline Kozárovice granodiorite (Hercynian Central Bohemian Pluton, Bohemian Massif) and associated small quartz monzonite masses imply that mixing between acid (granodioritic) and basic (monzonitic/monzogabbroic) magmas was locally petrogenetically significant.Net veining, with acicular apatite and numerous lath-shaped plagioclase crystals present in the quartz monzonite, and abundant mafic microgranular enclaves (MME) in the granodiorite, indicate that as the monzonitic magma was injected into the granodioritic magma chamber, it rapidly cooled and was partly disintegrated by the melt already present. Evidence from cathodoluminescence suggests that the two magmas exchanged early-formed plagioclase crystals. In the quartz monzonite, granodiorite-derived crystals were overgrown by narrow calcic zones, followed by broad, normally zoned sodic rims. In the granodiorite, plagioclase crystals with calcic cores overgrown by normally zoned sodic rims are interpreted as xenocrysts from the monzonite. After thermal adjustment, crystallisation of the monzonitic magma ceased relatively slowly, forming quartz and K-feldspar oikocrysts.Although the whole-rock geochemistry of the quartz monzonite and the MME support magma mixing, major- and trace-element based modelling of the host granodiorite has previously indicated an origin dominated by assimilation and fractional crystallisation. Magma mixing therefore seems to represent a local modifying influence rather than the primary petrogenetic process.


2015 ◽  
Vol 134 (2) ◽  
pp. 266-290 ◽  
Author(s):  
Sandro Conticelli ◽  
Elena Boari ◽  
Luca Burlamacchi ◽  
Francesca Cifelli ◽  
Francesco Moscardi ◽  
...  

2017 ◽  
Vol 50 (4) ◽  
pp. 2057
Author(s):  
C. Uyanık ◽  
K. Koçak

Late Miocene to Pliocene volcanism produced lava domes with mafic microgranular enclaves (MMEs), nuée ardentes and pyroclastic fall and flow (ignimbrites) deposits in the WSW and NW of Konya city. All samples are predominantly high K-calc alkaline in composition but calc-alkaline and shoshonitic composition also exist. The felsic volcanics are mainly dacite, andesite, basaltic trachyandesite and rare trachyandesite in compositon. But, the MMEs have basaltic andesite and andesite compositon. SiO2 increases with decreasing TiO2, FeOt, MgO and CaO, suggesting fractional crystallization of mafic minerals. All samples have fractionated chondritenormalised REE pattern (La/YbN: 6.7-18.1), and negative Eu anomaly (Eu/Eu*: 0.67- 0.89), indicating plagioclase fractionation. In primitive mantle-normalized spider diagram, the samples show an enrichment in large ion litophile elements (LILE) such as Cs and Ba, and depletion in high field strength elements (HFSE), e.g. Dy and Y. They show negative Nb, Ta and Ti anomalies, indicating a subduction signature for their genesis. Based on geochemical data, the volcanics are suggested to have been formed by Assimilation-Fractional Crystallization (AFC) and/or magma mixing process. Various geotectonic diagrams imply volcanic arc to post collisional setting for the samples.


2004 ◽  
Vol 36 (1) ◽  
pp. 482 ◽  
Author(s):  
Κ. Αρίκας ◽  
Π. Βουδούρης ◽  
M. R. Kloos ◽  
Ch. Tesch

The penological, mineralogical and geochemical study of tertiary volcanic rocks from Petrota Graben/Maronia, resulted in the distinction of the following pétrographie groups: a) a high-K calcalkaline group (andesites-dacites), b) a shoshonitic group (shoshonitic andésites, trachytic lavas, c) rhyodacitic ignimbrites and ignimbritic tuffs with high-K calc-alkaline to shoshonitic affinity, and d) rhyolites. The shoshonitic volcanic rocks and the rhyolites are probably originated from the neighbouring Maronia plutonio complex. In addition the calc-alkaline group is related to similar volcanics outcroping in the Mesti-Kassiteres area (the northeastern extension of the Graben). The petrogenesis of the volcanic rocks of the Petrota gragen is attibuted to fractional crystallization and/or magma mixing processes. Epithermal style mineralizations in Mavrokoryfi, Perama Hill and Odontoto are believed to be genetically related to the rhyolitic magmatism in the area.


2017 ◽  
Vol 34 (1) ◽  
pp. 45 ◽  
Author(s):  
Elizard González-Becuar ◽  
Efrén Pérez-Segura ◽  
Ricardo Vega-Granillo ◽  
Luigi Solari ◽  
Carlos Manuel González-León ◽  
...  

Plutonic rocks of the Puerta del Sol area, in central Sonora, represent the extension to the south of the El Jaralito batholith, and are part of the footwall of the Sierra Mazatán metamorphic core complex, whose low-angle detachment fault bounds the outcrops of plutonic rocks to the west. Plutons in the area record the magmatic evolution of the Laramide arc and the Oligo-Miocene syn-extensional plutonism in Sonora. The basement of the area is composed by the ca. 1.68 Ga El Palofierral orthogneiss that is part of the Caborca block. The Laramide plutons include the El Gato diorite (71.29 ± 0.45 Ma, U-Pb), the El Pajarito granite (67.9 ± 0.43 Ma, U-Pb), and the Puerta del Sol granodiorite (49.1 ± 0.46 Ma, U-Pb). The younger El Oquimonis granite (41.78 ± 0.32 Ma, U-Pb) is considered part of the scarce magmatism that in Sonora records a transition to the Sierra Madre Occidental magmatic event. The syn-extensional plutons are the El Garambullo gabbro (19.83 ± 0.18 Ma, U-Pb) and the Las Mayitas granodiorite (19.2 ± 1.2 Ma, K-Ar). A migmatitic event that affected the El Palofierral orthogneiss, El Gato diorite, and El Pajarito granite between ca. 68 and 59 Ma might be related to the emplacement of the El Pajarito granite. The plutons are metaluminous to slightly peraluminous, with the exception of El Oquimonis granite, which is a peraluminous two-mica, garnet-bearing granite. They are mostly high-K calc-alkaline with nearly uniform chondrite-normalized REE and primitive-mantle normalized multielemental patterns that are characteristic of continental margin arcs and resemble patterns reported for other Laramide granites of Sonora. The Laramide and syn-extensional plutons also have Sr, Nd and Pb isotopic ratios that plot within the fields reported for Laramide granites emplaced in the Caborca terrane in northwestern and central Sonora. Nevertheless, and despite their geochemical affinity to continental magmatic arcs, the El Garambullo gabbro and Las Mayitas granodiorite are syn-extensional plutons that were emplaced at ca. 20 Ma during development of the Sierra Mazatán metamorphic core complex. The 40Ar/39Ar and K-Ar ages obtained for the El Palofierral orthogneiss, the Puerta del Sol granodiorite, the El Oquimonis granite, and the El Garambullo gabbro range from 26.3 ± 0.6 to 17.4 ± 1.0 Ma and are considered cooling ages associated with the exhumation of the metamorphic core complex.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 195 ◽  
Author(s):  
Wenheng Liu ◽  
Xiaodong Liu ◽  
Jiayong Pan ◽  
Kaixing Wang ◽  
Gang Wang ◽  
...  

The Qingshanbao complex, part of the uranium metallogenic belt of the Longshou-Qilian mountains, is located in the center of the Longshou Mountain next to the Jiling complex that hosts a number of U deposits. However, little research has been conducted in this area. In order to investigate the origin and formation of mafic enclaves observed in the Qingshanbao body and the implications for magmatic-tectonic dynamics, we systematically studied the mineralogy, petrography, and geochemistry of these enclaves. Our results showed that the enclaves contain plagioclase enwrapped by early dark minerals. These enclaves also showed round quartz crystals and acicular apatite in association with the plagioclase. Electron probe analyses showed that the plagioclase in the host rocks (such as K-feldspar granite, adamellite, granodiorite, etc.) show normal zoning, while the plagioclase in the mafic enclaves has a discontinuous rim composition and shows instances of reverse zoning. Major elemental geochemistry revealed that the mafic enclaves belong to the calc-alkaline rocks that are rich in titanium, iron, aluminum, and depleted in silica, while the host rocks are calc-alkaline to alkaline rocks with enrichment in silica. On Harker diagrams, SiO2 contents are negatively correlated with all major oxides but K2O. Both the mafic enclaves and host rock are rich in large ion lithophile elements such as Rb and K, as well as elements such as La, Nd, and Sm, and relatively poor in high field strength elements such as Nb, Ta, P, Ti, and U. Element ratios of Nb/La, Rb/Sr, and Nb/Ta indicate that the mafic enclaves were formed by the mixing of mafic and felsic magma. In terms of rare earth elements, both the mafic enclaves and the host rock show right-inclined trends with similar weak to medium degrees of negative Eu anomaly and with no obvious Ce anomaly. Zircon LA-ICP-MS (Laser ablation inductively coupled plasma mass spectrometry) U-Pb concordant ages of the mafic enclaves and host rock were determined to be 431.8 5.2 Ma (MSWD (mean standard weighted deviation)= 1.5, n = 14) and 432.8 4.2 Ma (MSWD = 1.7, n = 16), respectively, consistent with that for the zircon U-Pb ages of the granite and medium-coarse grained K-feldspar granites of the Qingshanbao complex. The estimated ages coincide with the timing of the late Caledonian collision of the Alashan Block. This comprehensive analysis allowed us to conclude that the mafic enclaves in the Qingshanbao complex were formed by the mixing of crust-mantle magma with mantle-derived magma due to underplating, which caused partial melting of the ancient basement crust during the collisional orogenesis between the Alashan Block and Qilian rock mass in the early Silurian Period.


2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


Sign in / Sign up

Export Citation Format

Share Document