FLUID INCLUSION EVIDENCE FOR HYDROTHERMAL ACTIVITY AND DEEP METEORIC WATER CIRCULATION IN THE CORDILLERA BLANCA DETACHMENT, PERU

2019 ◽  
Author(s):  
Tyler A. Grambling ◽  
◽  
Micah J. Jessup ◽  
Colin A. Shaw ◽  
Dennis L. Newell
Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Qihai Shu ◽  
Yong Lai

The Haisugou porphyry Mo deposit is located in the northern Xilamulun district, northeastern China. Based on alteration and mineralization styles and crosscutting relationships, the hydrothermal evolution in Haisugou can be divided into three stages: an early potassic alteration stage with no significant metal deposition, a synmineralization sericite-chlorite alteration stage with extensive Mo precipitation, and a postmineralization stage characterized by barren quartz and minor calcite and fluorite. The coexistence of high-salinity brine inclusions with low-salinity inclusions both in potassic alteration stage (~440°C) and locally in the early time of mineralization stage (380–320°C) indicates the occurrence of fluid boiling. The positive correlations between the homogenization temperatures and the salinities of the fluids and the low oxygen isotopic compositions (δ18Ofluid < 3‰) of the syn- to postmineralization quartz together suggest the mixing of magmatic fluids with meteoric water, which dominated the whole mineralization process. The early boiling fluids were not responsible for ore precipitation, whereas the mixing with meteoric water, which resulted in temperature decrease and dilution that significantly reduced the metal solubility, should have played the major role in Mo mineralization. Combined fluid inclusion microthermometry and chlorite geothermometer results reveal that ore deposition mainly occurred between 350 and 290°C in Haisugou.


2021 ◽  
Author(s):  
Sophie F. Warken ◽  
Therese Weissbach ◽  
Tobias Kluge ◽  
Hubert Vonhof ◽  
Denis Scholz ◽  
...  

Abstract. We present speleothem fluid inclusion δ18Of and δ2Hf values from Larga Cave, Puerto Rico, that covers the interval between 46.2 to 15.3 ka before present on millennial scale, including the Last Glacial Maximum (LGM) and several stadial and interstadial cycles. The dataset can be divided in two main clusters of stable isotope compositions of the fluid inclusion water with respect to the global meteoric water line which coincide with strong variations in the water content of the stalagmite. In particular, this clustering is found to be climate related, where the first cluster comprises samples from cold and dry periods, such as Heinrich and Greenland stadials, as well as parts of the LGM, which exhibit very high δ18Of and δ2Hf values. We interpret this enrichment as caused by evaporation inside the cave due to enhanced cave ventilation during these colder and drier times. In contrast, in most samples corresponding to warmer and wetter Greenland interstadials, but also for some from Heinrich Stadial 2 and 3, the δ18Of and δ2Hf values plot on the meteoric water line and modification of fluid inclusion water due to “in-cave” evaporation is found negligible. Consequently, variations of last glacial hydro-climate and temperature in the western tropical Atlantic can be constrained. In general, δ18Of values from fluid inclusions are up to 3 ‰ higher than those of modern drip water, which is interpreted as a weaker atmospheric convective activity during the last glacial period. In addition, reconstructed temperatures suggest an average cooling of c. 3 °C during the LGM compared to modern cave temperature. During Heinrich Stadials 2 and 3, reconstructed cave temperatures yield an additional cooling of 2.9 ± 2.6 °C and 4.4 ± 0.6 °C, respectively. Higher δ18Of values of these samples further suggest that the drip water was dominated by orographic rainfall and/or cold fronts, along with weak or even absent convective activity. In contrast, during interstadial phases, reconstructed temperatures reached nearly modern values, and convective activity was comparable or only slightly weaker than today.


Author(s):  
Sarah Carruzzo ◽  
Daniel J. Kontak ◽  
D. Barrie Clarke

The 370 Ma peraluminous South Mountain Batholith (SMB) intrudes Meguma Supergroup metasedimentary rocks in Nova Scotia. The New Ross area of the SMB contains polymetallic mineralisation (Sn, W, U, Mo, Cu and Mn) in pegmatite, greisen and vein directly or indirectly associated with highly evolved fractions of the SMB. Eight mineral deposits from this area have several fluid inclusion types hosted by quartz: (1) monophase liquid (L); (2) monophase vapour (V); (3) aqueous, L-V (4) aqueous, L-rich + solids; (5) aqueous, L-rich + halite. Inclusions have irregular to equant shapes and are pseudo-secondary or secondary. The irregularity and variability of L:V ratios within fluid inclusion populations suggest post-entrapment modifications of inclusions (i.e. necking).Thermometric data indicate three distinct fluids in terms of salinity: (1) 19-25 wt. % equiv. NaCl (rarely 14-25 wt. % NaCl equiv.), (2) 29-43 wt. % equiv. NaCl, and (3) 0-9 wt. % equiv. NaCl. Temperatures of first melting and ice/hydrohalife melting indicate CaCl2 in solution. Proximity of the deposits to Meguma Supergroup metasedimentary rocks suggests that this Ca component may be externally derived. The majority of the low-salinity fluid population has the composition of meteoric water. Electron microprobe analyses of artificially decrepitated mounds identify Na, Ca and K as major solutes, with a continuum in terms of compositions. Other solute components in the mounds are Fe and Ba, and a variety of metals of unknown speciation also occur (Cu, Zn, Fe, Ni). Homogenisation temperatures (Th) range from c. 80°C to 370°C, but for inclusion assemblages the range is 10°C to 20°C. Given the 3 kbar depth of emplacement of the SMB, estimated entrapment temperatures are c. 200°C to 550°C. The fluid inclusion data appear to reflect: (1) trapping of mixed Na-K-Ca brines during isobaric cooling in pegmatite and greisen deposits as indicated by large ranges in Th; (2) formation of deposits at different ambient pressures (i.e. depth); and (3) mixing of fluids of different reservoirs (i.e. magmatic, metamorphic, meteoric).


2020 ◽  
Author(s):  
Stefan de Graaf ◽  
Casimir Nooitgedacht ◽  
Hubert Vonhof ◽  
Jeroen van der Lubbe ◽  
John Reijmer

&lt;p&gt;Vein-hosted fluid inclusions may represent remnants of subsurface paleo-fluids and therefore provide a valuable record of fracture-controlled fluid flow. Isotope data (&amp;#948;&lt;sup&gt;2&lt;/sup&gt;H and &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O) of fluid inclusions are particularly useful for studying the provenance and type of paleo-fluids circulating in the subsurface. Although isotopic analysis of sub-microliter amounts of fluid inclusion water is not straightforward, major steps forward have been made over the past decade through the development of continuous-flow set-ups. These techniques make use of mechanical crushing at a relatively low-temperature (110&amp;#730;C) and allow for on-line analysis of both &amp;#948;&lt;sup&gt;2&lt;/sup&gt;H and &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O ratios of bulk fluid inclusion water. However, continuous-flow techniques have mostly been used in speleothem research, and have not yet found a widespread application on vein systems for hydrogeological reconstructions.&lt;/p&gt;&lt;p&gt;We used isotope data of fluid inclusions hosted in calcite vein cements to reconstruct regional fluid migration pathways in the Albanian foreland fold-and-thrust system. Tectonic forces during thrust emplacement typically instigate distinct phases of fracturing accompanied by complex fluid flow patterns. The studied calcite veins developed in a sequence of naturally fractured Cretaceous to Eocene carbonate rocks as a result of several fracturing events from the early stages of burial onward. Fluid inclusion isotope data of the veins reveal that fluids circulating in the carbonates were derived from an underlying reservoir, which consisted of a mixture of meteoric water and evolved marine fluids, probably derived from deep-seated evaporites. The meteoric fluids infiltrated in the hinterland before being driven outward into the foreland basin. The fluid inclusion isotope data furthermore show that meteoric water becomes increasingly dominant in the system through time as migration pathways shortened and marine formation fluids were progressively flushed out.&lt;/p&gt;&lt;p&gt;The diagenetic stability of fluid inclusions is of key interest in the study of their isotope ratios. Recrystallization, secondary fluid infiltration and isotope exchange processes could potentially drive alterations of fluid inclusion isotope signatures after entrapment. In this case, however, isotope signatures of fluid inclusions seem to have remained largely unaltered, despite the Cretaceous to Tertiary age of the vein system. Oxygen isotope exchange processes between the fluid inclusion water and host mineral could have been inhibited at the relatively low temperatures of vein formation (i.e. &lt;80&amp;#730;C). Although more research into the diagenetic stability of fluid inclusion isotope ratios is required, the fluid inclusion isotope record has potential as a powerful tool for fluid provenancing in subsurface fluid flow systems.&lt;/p&gt;


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 417
Author(s):  
Qing Wei ◽  
Hongrui Fan ◽  
Jacques Pironon ◽  
Xuan Liu

Quartz is the most common gangue mineral in hydrothermal veins. Coupled with capacities of hosting fluid inclusions and recording varieties of microtextures, its solubility behavior may provide unparalleled insights into hydrothermal processes. In this study, the Linglong goldfield in Jiaodong is targeted to investigate gold-producing quartz veining process. Scanning electron microscope (SEM)-cathodoluminescence (CL) imaging uncovered three episodes of quartz deposition, intervened by an episode of quartz dissolution. Based on newly-developed quartz solubility diagrams and CL-aided fluid inclusion microthermometry, it is proposed that precipitation of the earliest quartz (Qz1) was controlled by CO2 content increase and subordinately affected by decompressional cooling, leading to the formation of the early thick gold-barren veins (V1); the second generation of quartz (Qz2a) was formed by the same fluids that may have been diluted and cooled by meteoric water, leading to a greatly reduced quantity of quartz and the deposition of pyrite and gold; and the third generation of quartz (Qz2b) was deposited along with polymetallic sulfides, due to fluid cooling following a quartz dissolution event likely induced by cooling in retrograde solubility region and/or CO2 content decrease. This research may elucidate gold formation processes in orogenic intrusion—related deposits, and points to imperative CL-based in situ analyses for future studies.


2014 ◽  
Vol 127 (1-2) ◽  
pp. 149-161 ◽  
Author(s):  
Aude Gébelin ◽  
Christian Teyssier ◽  
Matthew T. Heizler ◽  
Andreas Mulch

2013 ◽  
Vol 151 (5) ◽  
pp. 798-815 ◽  
Author(s):  
MICHAEL ANENBURG ◽  
OR M. BIALIK ◽  
YEVGENY VAPNIK ◽  
HAZEL J. CHAPMAN ◽  
GILAD ANTLER ◽  
...  

AbstractSpectacular celestine geodes occur in a Jurassic peri-evaporitic sequence (Ardon Formation) exposed in Makhtesh Ramon, southern Israel. The geodes are found only in one specific location: adjacent to an intrusive contact with a Lower Cretaceous basaltic dyke. Celestine, well known in sedimentary associations worldwide and considered as a low temperature mineral, may therefore be associated with magmatic-induced hydrothermal activity. Abundant fluid inclusions in celestine provide valuable information on its origin: gas-rich inclusions in celestine interiors homogenized at T≥200°C whereas smaller liquid-rich inclusions record the growth of celestine rims at T≤200°C. Near 0°C melting temperatures of some fluid inclusions and the occurrence of hydrous Ca-sulphate solid crystals in other inclusions indicate that celestine precipitated from variably concentrated Ca-sulphate aqueous solutions of meteoric origin. Celestine crystallized from meteoric water heated by the cooling basaltic dyke at shallow levels (c. 160 m) during a Lower Cretaceous thermal perturbation recorded by regional uplift and magmatism. The 87Sr/86Sr ratio of geode celestine, 0.7074, is similar to that measured in the dolostones of the host Jurassic sequence, but differs markedly from the non-radiogenic ratio of the dyke. Strontium in celestine was derived from dolostones preserving the 87Sr/86Sr of Lower Jurassic seawater, while sulphur (δ34S = 19.9‰) was provided by in situ dissolution of precursor marine gypsum (δ34S = 16.8‰) indicated by relict anhydrite inclusions in celestine. Low-temperature meteoric fluid flow during the Campanian caused alteration of the dyke into secondary clays and alteration of geodal celestine into quartz, calcite and iron oxides.


Sign in / Sign up

Export Citation Format

Share Document