Lithology and reservoir properties of the Delaware Mountain Group of the Delaware Basin and implications for saltwater disposal and induced seismicity

2021 ◽  
Vol 91 (11) ◽  
pp. 1113-1132
Author(s):  
Katie Smye ◽  
D. Amy Banerji ◽  
Ray Eastwood ◽  
Guin McDaid ◽  
Peter Hennings

ABSTRACT Deepwater siliciclastic deposits of the Delaware Mountain Group (DMG) in the Delaware Basin (DB) are the primary interval for disposal of hydraulic fracturing flowback and produced water from unconventional oil production. Understanding the storage capacity of the DMG is critical in mitigating potential risks such as induced seismicity, water encroachment on production, and drilling hazards, particularly with likely development scenarios and expected volumes of produced water. Here we present a basin-wide geologic characterization of the DMG of the Delaware Basin. The stratigraphic architecture, lithology, and fluid-flow properties including porosity, permeability, amalgamation ratios, and pore volumes, are interpreted and mapped. Lithologies are predicted using gamma-ray and resistivity log responses calibrated to basinal DMG cores and outcrop models. Sandstones exhibit the highest porosity and permeability, and sand depocenters migrate clockwise and prograde basinward throughout Guadalupian time. Permeability is highest at the top of the Cherry and Bell Canyon formations of the DMG, reaching tens to hundreds of millidarcies in porous sandstones. Porous and permeable sandstones are fully amalgamated at the bed scale, but at the channel scale, most sandstones are separated by low-permeability siltstones or carbonates where net sandstone is less than 30%. This geologic characterization can be used to assess the regional storage capacity of the DMG and as input for dynamic fluid-flow models to address pore-pressure evolution, zonal containment, and induced seismicity.

2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


2020 ◽  
Vol 9 (2) ◽  
pp. 48-54
Author(s):  
Halauddin Halauddin ◽  
Suhendra Suhendra ◽  
Muhammad Isa

Penelitian ini bertujuan untuk menghitung porositas efektif (фeff) dan permeabilitas (k) menggunakan model segitiga dengan variasi tinggi yaitu 3, 4, 5, 6 dan 7 cm. Perhitungan porositas dan permeabilitas yang efektif dilakukan dengan menggunakan model Lattice Gas Automata (LGA), yang diimplementasikan dengan bahasa pemrograman Delphi 7.0. Untuk model segitiga penghalang dengan tinggi 3, 4, 5, 6 dan 7 cm, nilai porositas efektif dan permeabilitas, masing-masing: фeff (T1) = 0,1690, k (T1) = 0 , 001339 pixel2; фeff (T2) = 0,1841, k (T2) = 0,001904 pixel2; фeff (T3) = 0,1885, k (T3) = 0,001904 pixel2; фeff (T4) = 0,1938, k (T4) = 0001925 pixel2; dan фeff (T5) = 0,2053, k (T5) = 0,002400 pixel2. Dari hasil simulasi, diperoleh tinggi segitiga akan berpengaruh signifikan terhadap nilai porositas efektif dan permeabilitas. Pada segitiga lebih tinggi, menyebabkan tabrakan model aliran fluida LGA mengalami lebih banyak hambatan untuk penghalang, sehingga porositas efektif dan permeabilitas menurun. Sebaliknya, jika segitiga lebih rendah, menyebabkan tabrakan model aliran fluida LGA mengalami lebih sedikit hambatan untuk penghalang, sehingga porositas efektif dan permeabilitas meningkat.This  research purposed to calculate the effective porosity (feff) and permeability (k) using the barrier model of the triangle with a high varying are 3, 4, 5, 6 and 7 cm. Effective porosity and permeability calculations performed using the model Lattice Gas Automata (LGA), which is implemented with Delphi 7.0 programming language. For model the barrier triangle with a high of 3, 4, 5, 6 and 7 cm, the value of effective porosity and permeability, respectively: feff(T1)=0,1690, k(T1)=0,001339 pixel2; feff(T2)=0,1841, k(T2)=0,001904 pixel2; feff(T3)=0,1885, k(T3)=0,001904 pixel2; feff(T4)=0,1938, k(T4)= 0001925 pixel2; and feff(T5)=0,2053, k(T5)=0,002400 pixel2. From the simulation results, obtained by the high of the triangle will be a significant effect on the value of effective porosity and permeability. If the triangle highest, causing the collision of fluid flow models LGA experience more obstacles to the barrier, so that the effective porosity and permeability decrease. Conversely, if the triangle lower, causing the collision of fluid flow models LGA experience less obstacles to the barrier, so that the effective porosity and permeability increases.Keywords: Effective porosity, permeability, model triangle, model LGA 


GeoArabia ◽  
2004 ◽  
Vol 9 (1) ◽  
pp. 153-194 ◽  
Author(s):  
Adrian Immenhauser ◽  
Heiko Hillgärtner ◽  
Ute Sattler ◽  
Giovanni Bertotti ◽  
Pascal Schoepfer ◽  
...  

ABSTRACT Limestones of the middle Cretaceous Qishn Formation are exposed in the Haushi-Huqf area of Oman. These carbonates preserved reservoir properties due to shallow burial and an arid post-exhumation climate. This characteristic makes the Qishn Formation an excellent outcrop analogue for the Upper Kharaib and Lower Shu’aiba oil reservoirs in the Interior Oman basins. The aim of this paper is to provide a broad overview of results from an industry-oriented field study recently performed in the Qishn Formation outcrops belts. The comparison of these results with studies undertaken in the Northern Oman Mountains and the Oman Interior subsurface is the topic of ongoing research. The age of the Qishn Formation is middle Barremian to mid-early Aptian, the Hawar Member (equivalent) is earliest Aptian in age. The paleo-environments recorded range from the tidal mudflat to the argillaceous platform setting (outer ramp) below the storm wave base. In terms of sequence stratigraphy, four large-scale transgressive-regressive cycles of Cretaceous age (Jurf and Qishn formations) were distinguished. Sequence I, a dolomitized succession termed Jurf Formation, is the equivalent of the Lekhwair, the Lower Kharaib and possibly older Cretaceous units. Due to pervasive early dolomitization, the Jurf Formation is not further considered here. Sequence II, forming the base of the overlying Qishn Formation represents the equivalent of the Upper Kharaib, portions of Sequence III the Hawar Member, and Sequence IV is the equivalent of the Lower Shu’aiba. At least two lower orders of cycles are superimposed on these four sequences. Total porosity with a mean of 19.3% (s = 8.74%) and permeability with a mean of 6.36 mD (s = 6.57 mD) characterize the Qishn Formation limestones. Overall, the correlation of porosity and permeability is better for regressive (highstand) deposits than for the transgressive limestones. The lateral variability (>100 m) of porosity and permeability values within specific intervals is substantial and matches or even exceeds stratigraphic variability. Spectral gamma ray logs from Qishn Formation recorded in the outcrops are dominated by the U spectrum and to a lesser degree by the Th spectrum. Qishn Formation carbonates in the Haushi-Huqf High are extensively fractured. The outcrops studied display very widespread systematic jointing with dominant NW-SE to WNW-ESE trends. A second, subordinate system results in a potentially highly interconnective network. Joints are strictly confined to specific beds or groups of beds and have regular spacing of between 6 and 18 cm. Joints are related to regional stress fields and do not show significant changes (in density or direction) in the vicinity of folds or faults. Faults are typically organized in corridors consisting of up to several metre-wide zones with swarms of discrete fault planes. Fault gauges are very rarely observed, but where present, form discontinuous, 10s of cm long lenses.


2011 ◽  
Vol 189-193 ◽  
pp. 2285-2288
Author(s):  
Wen Hua Jia ◽  
Chen Bo Yin ◽  
Guo Jin Jiang

Flow features, specially, flow rate, discharge coefficient and efflux angle under different operating conditions are numerically simulated, and the effects of shapes and the number of notches on them are analyzed. To simulate flow features, 3D models are developed as commercially available fluid flow models. Most construction machineries in different conditions require different actions. Thus, in order to be capable of different actions and exhibit good dynamic behavior, flow features should be achieved in designing an optimized proportional directional spool valve.


The traffic flow conditions in developing countries are predominantly heterogeneous. The early developed traffic flow models have been derived from fluid flow to capture the behavior of the traffic. The very first two-equation model derived from fluid flow is known as the Payne-Whitham or PW Model. Along with the traffic flow, this model also captures the traffic acceleration. However, the PW model adopts a constant driver behavior which cannot be ignored, especially in the situation of heterogeneous traffic.This research focuses on testing the PW model and its suitability for heterogeneous traffic conditions by observing the model response to a bottleneck on a circular road. The PW model is mathematically approximated using the Roe Decomposition and then the performance of the model is observed using simulations.


Sign in / Sign up

Export Citation Format

Share Document