Codependent histories of the San Andreas and San Jacinto fault zones from inversion of fault displacement rates

Geology ◽  
2004 ◽  
Vol 32 (11) ◽  
pp. 961 ◽  
Author(s):  
Richard A. Bennett ◽  
Anke M. Friedrich ◽  
Kevin P. Furlong
Geophysics ◽  
1967 ◽  
Vol 32 (2) ◽  
pp. 297-301 ◽  
Author(s):  
S. N. Domenico

A gravity profile was obtained from closely spaced readings along a traverse approximately nine miles in length across the San Andreas fault zone immediately south of Palmdale, California in the western Mojave Desert. Corrected gravity values show a slight but distinctive minimum associated with the fault zone which may be attributed to the reduced density of the shattered rock masses in the fault zone. The existence of this minimum suggests that major fault zones may be traced across terrain, on which surface expression of the fault does not exist, by successive profiles across the suspected position of the fault zone.


1968 ◽  
Vol 58 (6) ◽  
pp. 1955-1973
Author(s):  
Stewart W. Smith ◽  
Max Wyss

ABSTRACT Immediately following the 1966 Parkfield earthquake a continuing program of fault displacement measurements was undertaken, and several types of instruments were installed in the fault zone to monitor ground motion. In the year subsequent to the earthquake a maximum of at least 20 cm of displacement occurred on a 30 km section of the San Andreas fault, which far exceeded the surficial displacement at the time of the earthquake. The rate of displacement decreased logarithmically during this period in a manner similar to that of the decrease in aftershock activity. After the initial high rate of activity it could be seen that most of the displacement was occurring in 4–6 day epochs of rapid creep following local aftershocks. The variation of fault displacement along the surface trace was measured and shown to be consistent with a vertidal fault surface 44 km long and 14 km deep, along which a shear stress of 2.4 bars was relieved.


2012 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Naside Ozer ◽  
Savas Ceylan

We analyzed statistical properties of earthquakes in western Anatolia as well as the North Anatolian Fault Zone (NAFZ) in terms of spatio-temporal variations of fractal dimensions, p- and b-values. During statistically homogeneous periods characterized by closer fractal dimension values, we propose that occurrence of relatively larger shocks (M >= 5.0) is unlikely. Decreases in seismic activity in such intervals result in spatial b-value distributions that are primarily stable. Fractal dimensions decrease with time in proportion to increasing seismicity. Conversely, no spatiotemporal patterns were observed for p-value changes. In order to evaluate failure probabilities and simulate earthquake occurrence in the western NAFZ, we applied a modified version of the renormalization group method. Assuming an increase in small earthquakes is indicative of larger shocks, we apply the mentioned model to micro-seismic (M<= 3.0) activity, and test our results using San Andreas Fault Zone (SAFZ) data. We propose that fractal dimension is a direct indicator of material heterogeneity and strength. Results from a model suggest simulated and observed earthquake occurrences are coherent, and may be used for seismic hazard estimation on creeping strike-slip fault zones.


2020 ◽  
Author(s):  
Jorge Nicolas Hayek Valencia ◽  
Duo Li ◽  
Dave A. May ◽  
Alice-Agnes Gabriel

<p>Earthquakes are a multi-scale, multi-physics problem. For the last decades, earthquakes have been modeled as a sudden displacement discontinuity across a simplified (potentially heterogeneous) surface of infinitesimal thickness in the framework of linear elastodynamics. Thus, earthquake models are commonly forced to distinguish artificially between on-fault frictional failure and the off-fault response of rock.<span> </span></p><p>While complex volumetric failure patterns of fault networks are observed from well-recorded large earthquakes (e.g., the 2016 M<sub>w</sub>7.8 Kaikōura event, <em>Klinger et al. 2018</em>) and small earthquakes (e.g., events in the San Jacinto Fault Zone, <em>Cheng et al. 2018</em>) as well as in laboratory experiments (e.g., in high-velocity friction experiments,<em> Passelègue et al., 2016</em>) inelastic deformation within a larger volume around the fault is generally neglected when studying kinematics, dynamics and the energy budget of earthquakes. Fault behaviour is then dominantly controlled by lab-derived friction on a surface. Recent 2D collapsing of material properties, stresses, geometry, and strength conditions from seismo-thermo-mechanical models to elastodynamic frictional interfaces illustrated resulting earthquake complexity and modeling challenges (<em>van Zelst et al., 2019</em>).</p><p>To understand the mechanics of slip in extended fault zones the ERC project <strong>TEAR</strong> (https://www.tear-erc.eu) aims to solve the governing equations of earthquake sources based on the conservation of mass, momentum and energy and rheological models for generalized visco-elasto-plastic materials. We here present (i) 2D numerical experiments of rupture dynamics and displacement decoupling under loading for varying fault zone properties resembling observations from the San Jacinto Fault Zone in a weak discontinuity approach<span>  </span>sing a diffuse fault representation (adapted stress-glut approach, Madariaga et al., 1998) within a <em>PETSc</em> spectral element discretisation of the seismic wave equation; (ii) Verification of modeling rupture dynamics using a novel diffuse interface approach using<em> ExaHyPE</em> (www.exahype.eu, <em>Reinarz et al. 2019</em>) that allows spontaneous, finite crack formation (<em>Tavelli et al.,</em> in prep.) and adaptive mesh refinement (AMR) zooming into the process zone at the rupture tip.</p><p>By this means, we start exploring scalable software for modelling shear rupture across extended, spontaneously developing fault systems for testing the hypothesis, that earthquake dynamics in fault zones can be jointly captured based on the theory of generalized visco-elasto-plastic materials.</p><p>References:</p><ul><li>Cheng, Y. et al. Diverse volumetric faulting patterns in the San Jacinto fault zone. JGR: Solid Earth, 123.6, 5068-5081 (2018). https://doi.org/10.1029/2017JB015408</li> <li>Klinger, Y. et al. Earthquake damage patterns resolve complex rupture processes. GRL, 45, 10,279– 10,287 (2018). https://doi.org/10.1029/2018GL078842</li> <li>Madariaga, R. et al. Modeling dynamic rupture in a 3D earthquake fault model. BSSA, 88.5 (1998): 1182-1197.</li> <li>Passelègue, F. X. et al. Frictional evolution, acoustic emissions activity, and off‐fault damage in simulated faults sheared at seismic slip rates. JGR: Solid Earth, 121(10), 7490-7513 (2016). doi:10.1002/2016JB012988</li> <li>Reinarz, A. et al. ExaHyPE: An Engine for Parallel Dynamically Adaptive Simulations of Wave Problems. arXiv preprint (2019), arXiv:1905.07987.</li> <li>Tavelli, M. et al. Space-time adaptive ADER discontinuous Galerkin schemes for nonlinear hyperelasticity with material failure, in prep.</li> <li>Van Zelst, I. et al. Modeling Megathrust Earthquakes Across Scales: One-way Coupling From Geodynamics and Seismic Cycles to Dynamic Rupture. JGR: Solid Earth, <span>124</span>, <span>11414</span>–<span>11446</span> (2019). https://doi.org/10.1029/2019JB017539</li> </ul>


2020 ◽  
Author(s):  
Florent Brenguier ◽  
Aurelien Mordret ◽  
Yehuda Ben-Zion ◽  
Frank Vernon ◽  
Pierre Boué ◽  
...  

<p>Laboratory experiments report that detectable seismic velocity changes should occur in the vicinity of fault zones prior to earthquakes. However, operating permanent active seismic sources to monitor natural faults at seismogenic depth has been nearly impossible to achieve. The FaultScan project (Univ. Grenoble Alpes, Univ. Cal. San Diego, Univ. South. Cal.) aims at leveraging permanent cultural sources of ambient seismic noise to continuously probe fault zones at a few kilometers depth with seismic interferometry. Results of an exploratory seismic experiment in Southern California demonstrate that correlations of train-generated seismic signals allow daily reconstruction of direct P body-waves probing the San Jacinto Fault down to 4 km depth. In order to study long-term earthquake preparation processes we will monitor the San Jacinto Fault using such approach for at least two years by deploying dense seismic arrays in the San Jacinto Fault region. The outcome of this project may facilitate monitoring the entire San Andreas Fault system using the railway and highway network of California. We acknowledge support from the European Research Council under grant No.~817803, FAULTSCAN.</p>


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Kate Wheeling

Tidal forces act on well water around the San Andreas Fault, giving researchers a new window into the hydrogeological structure of fault zones.


Geosphere ◽  
2021 ◽  
Author(s):  
Sally F. McGill ◽  
Lewis A. Owen ◽  
Ray J. Weldon ◽  
Katherine J. Kendrick ◽  
Reed J. Burgette

Four new latest Pleistocene slip rates from two sites along the northwestern half of the San Bernardino strand of the San Andreas fault suggest the slip rate decreases southeastward as slip transfers from the Mojave section of the San Andreas fault onto the northern San Jacinto fault zone. At Badger Canyon, offsets coupled with radiocarbon and optically stimulated luminescence (OSL) ages provide three independent slip rates (with 95% confidence intervals): (1) the apex of the oldest dated alluvial fan (ca. 30–28 ka) is right-laterally offset ~300–400 m yielding a slip rate of 13.5 +2.2/−2.5 mm/yr; (2) a terrace riser incised into the northwestern side of this alluvial fan is offset ~280–290 m and was abandoned ca. 23 ka, yielding a slip rate of 11.9 +0.9/−1.2 mm/yr; and (3) a younger alluvial fan (13–15 ka) has been offset 120–200 m from the same source canyon, yielding a slip rate of 11.8 +4.2/−3.5 mm/yr. These rates are all consistent and result in a preferred, time-averaged rate for the past ~28 k.y. of 12.8 +5.3/−4.7 mm/yr (95% confidence interval), with an 84% confidence interval of 10–16 mm/yr. At Matthews Ranch, in Pitman Canyon, ~13 km northwest of Badger Canyon, a landslide offset ~650 m with a 10Be age of ca. 47 ka yields a slip rate of 14.5 +9.9/−6.2 mm/yr (95% confidence interval). All of these slip rates for the San Bernardino strand are significantly slower than a previously published rate of 24.5 ± 3.5 mm/yr at the southern end of the Mojave section of the San Andreas fault (Weldon and Sieh, 1985), suggesting that ~12 mm/yr of slip transfers from the Mojave section of the San Andreas fault to the northern San Jacinto fault zone (and other faults) between Lone Pine Canyon and Badger Canyon, with most (if not all) of this slip transfer happening near Cajon Creek. This has been a consistent behavior of the fault for at least the past ~47 k.y.


Sign in / Sign up

Export Citation Format

Share Document