Fossilization potential of marine assemblages and environments

Geology ◽  
2020 ◽  
Author(s):  
Jack O. Shaw ◽  
Derek E.G. Briggs ◽  
Pincelli M. Hull

The fossil record provides the only direct record of the history of life, but it is an incomplete one. Discriminating between what is absent and what is simply not preserved is critical to macroevolutionary and macroecological inferences. A comparison of diversity data in over 20,000 modern marine assemblages from the Ocean Biogeographic Information System database (OBIS) with fossil occurrence data from the Paleobiology Database (PBDB) yielded a global assessment of assemblage-level fossilization potential. We used two different metrics, taxon fossilization potential and within-environment fossilization potential, to assess the proportion of taxa in a modern community with PBDB occurrences or with PBDB occurrences in the same environment, respectively. Taxon fossilization potential of marine genera varies between environments, from 34% in shallow and deep water to 44% in coral reefs, 51% on seamounts, and 15% in pelagic assemblages. Within-environment fossilization potential, in contrast, does not exceed 32% (in shallow water), a lower value than that obtained in other studies, and it may be zero (on seamounts and pelagic environments). These differences are mainly a product of representation in the rock record and sampling biases rather than taxon duration.

2021 ◽  
Author(s):  
Jack Shaw ◽  
Derek Briggs ◽  
Pincelli Hull

<p>Only a small percentage of all life that ever existed is preserved in the rock record. Some animals and environments are particularly unlikely to fossilize—e.g., soft-bodied organisms and high-energy habitats—biasing fossil deposit faunal composition and resultant inferences about macroevolution and macroecology. To estimate the extent of information loss caused by non-preservation we compared diversity data in over 20,000 modern marine assemblages (Ocean Biogeographic Information System; OBIS) with fossil occurrence data (Paleobiology Database; PBDB) to yield a global assessment of assemblage-level fossilization potential as it varies across depth, habitats, and environments. We used two different metrics, taxon fossilization potential and within-environment fossilization potential, to assess the proportion of taxa in a modern community with PBDB occurrences or with PBDB occurrences in the same environment, respectively. Averaged across all 20,000+ marine assemblages, mean taxon fossilization potential is 38% and mean values vary between environments: from 34% in shallow and deep water, 44% in coral reefs, 51% on seamounts, to 15% in pelagic assemblages. Mean within-environment fossilization potential, in contrast, does not exceed 32% (in shallow water), a lower value than that obtained in other studies, and may approach zero (on seamounts and pelagic environments). Differences between these two metrics indicate the large control of environment on fossilization potential. Our results provide a means to include and compare palaeoecological dynamics across a broader range of settings in the fossil record, while accounting for differences in fossilization potential among environments.</p>


Paleobiology ◽  
1982 ◽  
Vol 8 (4) ◽  
pp. 402-407 ◽  
Author(s):  
David R. Lindberg ◽  
Michael G. Kellogg

Associations of bathymetrically anomalous fossils, a phenomenon particularly common in shallow-water, marine, Neogene faunas of the northeastern Pacific, have yet to be explained adequately. No known physical transport processes can selectively move species upslope from deep water into diverse nearshore, shallow-water habitats. Previously proposed biological explanations are based on undocumented phenomena. We document bathymetric anomalies in Recent mollusc accumulations on Southeast Farallon Island, California, that are created by the activities of diving marine birds. Application of these observations to patterns in the Neogene fossil record is direct, involving the same genera and often the same species. We argue that the process has occurred since at least the Miocene when diving marine birds radiated rapidly, probably in response to trophic resources created by intensive upwelling (Lipps and Mitchell 1976) and that they could have transported specimens upslope in sufficient quantity to have contributed anomalous species to the Neogene fossil record. Specific examples from the literature are discussed.


2015 ◽  
Vol 66 (3) ◽  
pp. 217-233 ◽  
Author(s):  
Matúš Hyžný ◽  
Mathias Harzhauser ◽  
Wolfgang Danninger

AbstractDecapod crustaceans from the Ottnangian (middle Burdigalian, Lower Miocene) of the Western and Central Paratethys remain poorly known. In this study, we review and re-describe mud shrimps (Jaxea kuemeli), ghost shrimps (Gourretiasp.,Calliax michelottii) and brachyuran crabs of the families Leucosiidae, Polybiidae and Portunidae. A dorsal carapace of the genusCalliaxis reported for the first time in the fossil record. Re-examination of the type material ofRandallia strouhali(Leucosiidae) andGeryon ottnangensis(Geryonidae) resulted in a transfer of these species intoPalaeomyra(Leucosiidae) andLiocarcinus(Polybiidae), respectively.Achelous vindobonensis, originally described as a chela of a portunid crab, probably belongs to a member of Polybiidae and is provisionally treated asLiocarcinussp. Only two species,J. kuemeliandC. michelottii, are also known from the Karpatian, the succeeding Paratethyan stage. In most cases, the decapod assemblages of the Ottnangian consist of rather shallow-water taxa whereas the assemblages of the Karpatian consist of deep-water taxa from the middle and outer shelf. The Central Paratethyan assemblages show similarities in genus composition to the Proto-Mediterranean and recent Indo-Pacific regions.Gourretiasp. represents the earliest occurrence of the respective genus in the fossil record. The Oligocene–Early Miocene appearance ofPalaeomyraandLiocarcinusin the circum-Mediterranean implies that sources of present-day diversity hotspots in the Indo-Pacific trace to the Western Tethys (as for other decapod genera), although coeval decapod assemblages in the Indo-Pacific remain poorly known.


1992 ◽  
Vol 6 ◽  
pp. 104-104
Author(s):  
Richard A. Fortey ◽  
Robert M. Owen

Because trilobites occupied a wide a range of Paleozoic marine habitats they are a good group to examine hypotheses concerning the sites in which new major clades first appear, and their subsequent history of diversification and decline. There are several problems in this endeavour. The first concerns classification. Until a complete phylogenetic classification is available, there is no objective way to assess the equivalence or otherwise of groups which have been claimed as orders. For example, Odontopleurida and Lichida are treated as separate orders in some classifications, but are considered as a single major clade - presumably of ordinal status - in others. Some of the most commonly accepted groups (Olenellida, Ptychopariida) are paraphyletic. The second problem is taphonomic. The first appearance of a major group often coincides with a major extrinsic change, such as a regressive-transgressive couplet. Does the event initiate the novelty, or simply permit it to be preserved? Does such an event “punctuate” the fossil record, such that earlier, ancestral taxa belonging to the same clade go unrecognised?Trilobites are already paleogeographically diversified when they make their first appearance in the Lower Cambrian. Since trilobites constitute a true clade, this implies an earlier phase of vicariance of dispersal which is not recorded in the rocks. In China, Siberia, North America, and North Africa these first occurrences are in rocks of inshore origin: still earlier trilobites may have had thin cuticles which militated against their being preserved in the highest energy environments where “small shelly” fossils occurred. The groups Olenellida, Redlichiida, Corynexochida, Ptychopariina (?Lichida) appear in the early Cambrian. The earliest polymerids with morphology corresponding to deep water, atheloptic, is latest Lower Cambrian (Atops, Australia): there are many such in the mid-Cambrian.Opinions differ on the classification of Agnostida. Our own view relates Agnostina to Eodiscina, and on this view the early representatives of the clade (Lower Cambrian, China) are inshore compared with later agnostid occurrences, which typify outer shelf to slope. Ordovician agnostids are comparatively rare; the youngest agnostids were not confined to deep water sites.There is good evidence of early occurrences of Odontopleurida, Lichida s.s., Illaenina, Proetida and Phacopida in shallow water deposits. Evidence from Asaphida is more equivocal. Colonisation of deeper water habitats from shallow is rapid, although not achieved at the same time in each group. The scenario is of repeated production of deeper water forms from shelf taxa rather than wholesale movement of clades into that environment. After the demise of other groups in the late Devonian, for example, in the youngest Devonian and Carboniferous proetides radiated into deep water habitats. But the last trilobites of all in the Permian were shallow shelf inhabitants.


2007 ◽  
Vol 44 (9) ◽  
pp. 1313-1331 ◽  
Author(s):  
George R Dix ◽  
Mario Coniglio ◽  
John FV Riva ◽  
Aïcha Achab

Current paleogeographic reconstructions extend Late Ordovician Taconic-derived siliciclastics across the central Canadian craton prior to the terminal Ordovician glacioeustatic lowstand. Revision of the Late Ordovician Dawson Point Formation of the Timiskaming outlier greatly reduces the distribution of these siliciclastics, and documents a greater spread of shallow-water carbonate of Richmondian age. As revised, the Dawson Point Formation contains two informal members: a deep-water graptolitic shale that grades upward into shallow-water siliciclastic redbeds, and an upper member of shallow-water, muddy, crinoidal limestone with interbedded shale, likely representing low-energy shoals on a muddy shelf. Deep-water shale accumulation began in the upper manitoulinensis graptolite Zone following foundering of the regional foreland carbonate platform. Basin development documents a northward-younging (~1 million years) from southern Ontario foreland basins, in keeping with regional tectonic-driven transgression along eastern North America. The shale-to-carbonate succession of the Dawson Point Formation correlates with the Georgian Bay Formation on Manitoulin Island, wherein the upper carbonate-dominated divisions of both formations are equivalent to the siliciclastic Queenston Formation of southern Ontario. In absence of additional biostratigraphic information, the upper member of the Dawson Point Formation is likely Richmondian (or late Ashgillian) in age. The revised Late Ordovician history of the Timiskaming outlier may identify a once significant volume of shallow-water carbonate across the central Canadian craton, with related sequestration of carbon dioxide possibly aiding global cooling. Erosion of the carbonate, driven by developing glacioeustatic lowstand conditions, was likely contemporaneous with early Hirnantian peritidal deposition of the uppermost Queenston Formation in southern Ontario.


2006 ◽  
Vol 5 (4) ◽  
pp. 333-342 ◽  
Author(s):  
David Wacey ◽  
Nicola McLoughlin ◽  
Owen R. Green ◽  
John Parnell ◽  
Crispin A. Stoakes ◽  
...  

The recognition and understanding of the early fossil record on Earth is vital to the success of missions searching for life on other planets. Despite this, the evidence for life on Earth before ~3.0 Ga remains controversial. The discovery of new windows of preservation in the rock record more than 3.0 Ga would therefore be helpful to enhance our understanding of the context for the earliest life on Earth. Here we report one such discovery, a ~3.4 Ga sandstone at the base of the Strelley Pool Formation from the Pilbara of Western Australia, in which micrometre-sized tubular structures preserve putative evidence of biogenicity. Detailed geological mapping and petrography reveals the depositional and early diagenetic history of the host sandstone. We demonstrate that the depositional environment was conducive to life and that sandstone clasts containing putative biological structures can be protected from later metamorphic events, preserving earlier biological signals. We conclude from this that sandstones have an exciting taphonomic potential both on early Earth and beyond.


2013 ◽  
Vol 150 (5) ◽  
pp. 945-951 ◽  
Author(s):  
RUDY LEROSEY-AUBRIL ◽  
JAVIER ORTEGA-HERNÁNDEZ ◽  
CARLO KIER ◽  
ENRICO BONINO

AbstractThe Guzhangian Weeks Formation preserves a diverse, yet virtually unstudied, non-trilobite arthropod fauna. Here we describeTremaglaspis vanroyisp. nov., the oldest representative of an enigmatic group of extinct arthropods, the Aglaspidida.Tremaglaspiswas previously known from the Lower Ordovician and its morphology was regarded as particularly derived within the clade. Its occurrence in the Cambrian of Utah suggests that much of the early evolutionary history of the Aglaspidida remains unknown. A review of the environmental settings of previous aglaspidid findings suggests that these arthropods preferentially inhabited shallow-water environments, which may partially explain their limited fossil record.


1991 ◽  
Vol 65 (03) ◽  
pp. 355-360 ◽  
Author(s):  
Dana H. Geary ◽  
Warren D. Allmon ◽  
Marjorie L. Reaka-Kudla

Stomatopods (mantis shrimps) are important predators in Recent tropical shallow-water communities. Despite a long geological history, they are poorly preserved as fossils, and traces of their predation have never been identified from the fossil record. Here we report on Plio-Pleistocene gastropods (mostly Strombus) from Florida with distinctive holes “punched” into their body whorls. The similarity of these holes to holes punched into live gastropods by Gonadactylus implicates gonodactyloid stomatopods as the predators that made them. Recent gonodactyloids break gastropod shells as thick and thicker than those of the Plio-Pleistocene strombids that were punched. Because our data underestimate the incidence of stomatopod predation, the frequency of holes in these strombids (8–13 percent) suggests that stomatopod predation may be of considerable importance in the ecological and evolutionary history of tropical benthic assemblages.


Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


Sign in / Sign up

Export Citation Format

Share Document