Bathymetric anomalies in the Neogene fossil record: The role of diving marine birds

Paleobiology ◽  
1982 ◽  
Vol 8 (4) ◽  
pp. 402-407 ◽  
Author(s):  
David R. Lindberg ◽  
Michael G. Kellogg

Associations of bathymetrically anomalous fossils, a phenomenon particularly common in shallow-water, marine, Neogene faunas of the northeastern Pacific, have yet to be explained adequately. No known physical transport processes can selectively move species upslope from deep water into diverse nearshore, shallow-water habitats. Previously proposed biological explanations are based on undocumented phenomena. We document bathymetric anomalies in Recent mollusc accumulations on Southeast Farallon Island, California, that are created by the activities of diving marine birds. Application of these observations to patterns in the Neogene fossil record is direct, involving the same genera and often the same species. We argue that the process has occurred since at least the Miocene when diving marine birds radiated rapidly, probably in response to trophic resources created by intensive upwelling (Lipps and Mitchell 1976) and that they could have transported specimens upslope in sufficient quantity to have contributed anomalous species to the Neogene fossil record. Specific examples from the literature are discussed.

1996 ◽  
Vol 351 (1343) ◽  
pp. 1105-1112 ◽  

In this volume we have considered the problems of investigation special to cephalopods. Almost all our knowledge of their general biology is restricted to the shelf-living, muscular, negatively buoyant (the Loliginidae and Octopodidae) or gas-supported species (the Sepiidae and Nautilidae) and members of the Ommastrephidae which move on to the continental shelves at certain seasons. These species of the continental shelves comprise only about 15% of all cephalopod genera and live in water of less than 300 m depth, which covers only 6% of the Earth’s surface. They do not represent the majority of cephalopod species or much of their total biomass; 85 % of genera are spread in the upper 2000 m and across the bottom of the deep oceans, which occupy 66 % of the Earth’s surface. Over 40% of these genera are neutrally buoyant by oil or chemical means and may have very different lifestyles from the forms we know from shallow water. Improvement of our knowledge of the ecology of deep water forms is hindered by our poor direct sampling methods and rests largely upon sampling from stomachs or regurgitations of the predators that eat cephalopods.


2015 ◽  
Vol 66 (3) ◽  
pp. 217-233 ◽  
Author(s):  
Matúš Hyžný ◽  
Mathias Harzhauser ◽  
Wolfgang Danninger

AbstractDecapod crustaceans from the Ottnangian (middle Burdigalian, Lower Miocene) of the Western and Central Paratethys remain poorly known. In this study, we review and re-describe mud shrimps (Jaxea kuemeli), ghost shrimps (Gourretiasp.,Calliax michelottii) and brachyuran crabs of the families Leucosiidae, Polybiidae and Portunidae. A dorsal carapace of the genusCalliaxis reported for the first time in the fossil record. Re-examination of the type material ofRandallia strouhali(Leucosiidae) andGeryon ottnangensis(Geryonidae) resulted in a transfer of these species intoPalaeomyra(Leucosiidae) andLiocarcinus(Polybiidae), respectively.Achelous vindobonensis, originally described as a chela of a portunid crab, probably belongs to a member of Polybiidae and is provisionally treated asLiocarcinussp. Only two species,J. kuemeliandC. michelottii, are also known from the Karpatian, the succeeding Paratethyan stage. In most cases, the decapod assemblages of the Ottnangian consist of rather shallow-water taxa whereas the assemblages of the Karpatian consist of deep-water taxa from the middle and outer shelf. The Central Paratethyan assemblages show similarities in genus composition to the Proto-Mediterranean and recent Indo-Pacific regions.Gourretiasp. represents the earliest occurrence of the respective genus in the fossil record. The Oligocene–Early Miocene appearance ofPalaeomyraandLiocarcinusin the circum-Mediterranean implies that sources of present-day diversity hotspots in the Indo-Pacific trace to the Western Tethys (as for other decapod genera), although coeval decapod assemblages in the Indo-Pacific remain poorly known.


2010 ◽  
Vol 32 (2) ◽  
pp. 201 ◽  
Author(s):  
Brad V. Purcell

The dingo (Canis lupus dingo) is a keystone species in Australian ecosystems. The current study reports four dingoes observed attacking a swimming eastern grey kangaroo (Macropus giganteus) in the Wollondilly River, New South Wales. It is proposed that kangaroos need to stand at a certain depth of water to escape an attack by dingoes. If dingoes can continue attacking from opposing directions without threat of injury from the kangaroo, such as in shallow water where dingoes can stand or deep water where kangaroos cannot stand, then the attack may continue until the predator(s) kill the prey or the prey escapes. Further research on such behaviours is needed to understand the functional role of dingoes and the importance of pack structure in development of hunting strategies.


1992 ◽  
Vol 6 ◽  
pp. 278-278 ◽  
Author(s):  
S.W. Starratt

Taxonomic databases are important tools in the study of faunal diversity and evolution. The usefulness of the inferences drawn from these databases is diminished when the role of environment is not considered. Analysis of the foraminiferal database at the genus and family levels is used to demonstrate the effect of water depth on presumed changes in taxonomic diversity and evolutionary turnover rates.This paleoenvironmental effect is particularly noticeable when foraminiferal faunas of the late Paleozoic and the Mesozoic and Cenozoic intervals are compared. The late Paleozoic fauna is dominated by the Fusulinina and shallow-water (0–200 m) Textularuna. Standing diversity fluctuates greatly, and evolutionary turnover is high. This reflects short-term fluctuations in sea level which led to the rapid formation and destruction of narrow ecological niches. Evolutionary turnover appears to be related to reef growth during this time. This trend may also reflect an increased number of k-selected specialists which serve as proxy indicators for a slow-circulating oligotrophic ocean system. Shallow-water taxa may also be predisposed to extinction due to their reliance on symbiotic algae. The extinction event at the end of the Permian resulted in the loss of almost 70% of the standing generic diversity. This included the complete loss of the Fusulinina as well as a number of shallow-water textularids. Cohort survivorship curves are steep and taxon ages short during this time.The diversity increase over the past 245 million years has largely been due to the addition of deep-water (200-10,000 m) taxa. This was particularly true during the Late Cretaceous and early Eocene, and may reflect the relatively high eustatic sea level during those intervals. The relationship between reef development and evolutionary turnover rates is less clear during this time interval. Although the extinction event that marked the end of the Cretaceous resulted in a greater loss in absolute taxonomic diversity than occurred at the end of the Permian, the relative loss in generic diversity was only about 21% due to the large number of deep-water taxa. When the entire fauna is considered, cohort survivorship curves are less steep and taxon ages are longer than in the late Paleozoic, but when only the shallow-water taxa are considered, the results are similar to those for the late Paleozoic.


Geology ◽  
2020 ◽  
Author(s):  
Jack O. Shaw ◽  
Derek E.G. Briggs ◽  
Pincelli M. Hull

The fossil record provides the only direct record of the history of life, but it is an incomplete one. Discriminating between what is absent and what is simply not preserved is critical to macroevolutionary and macroecological inferences. A comparison of diversity data in over 20,000 modern marine assemblages from the Ocean Biogeographic Information System database (OBIS) with fossil occurrence data from the Paleobiology Database (PBDB) yielded a global assessment of assemblage-level fossilization potential. We used two different metrics, taxon fossilization potential and within-environment fossilization potential, to assess the proportion of taxa in a modern community with PBDB occurrences or with PBDB occurrences in the same environment, respectively. Taxon fossilization potential of marine genera varies between environments, from 34% in shallow and deep water to 44% in coral reefs, 51% on seamounts, and 15% in pelagic assemblages. Within-environment fossilization potential, in contrast, does not exceed 32% (in shallow water), a lower value than that obtained in other studies, and it may be zero (on seamounts and pelagic environments). These differences are mainly a product of representation in the rock record and sampling biases rather than taxon duration.


Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


2006 ◽  
Vol 258-260 ◽  
pp. 63-67
Author(s):  
V.M. Chumarev ◽  
V.P. Maryevich ◽  
V.A. Shashmurin

Diffusion processes play a dominant part in the macro kinetics of Fe, Ni and Co oxidation by calcium and sodium sulfates. Here, the reaction product forms a compact covering which spatially divides the reagents on the surface in the same way as in the oxidation and sulfidization of metals by oxygen and sulfur. Therefore, it is possible to assume in advance that interaction of metals with calcium and sodium sulfates will be determined not by the actual chemical reaction properly but by the diffusion transport processes.


Sign in / Sign up

Export Citation Format

Share Document