scholarly journals Supplemental Material: Age and mantle sources of Quaternary basalts associated with “leaky” transform faults of the migrating Anatolia-Arabia-Africa triple junction

2020 ◽  
Author(s):  
M.A. Cosca ◽  
et al.

Table of published geochemical and isotopic data and pressure estimates for volcanic rocks of the Toprakkale and Karasu volcanic fields.

2020 ◽  
Author(s):  
M.A. Cosca ◽  
et al.

Table of published geochemical and isotopic data and pressure estimates for volcanic rocks of the Toprakkale and Karasu volcanic fields.


Geosphere ◽  
2020 ◽  
Author(s):  
Michael A. Cosca ◽  
Mary Reid ◽  
Jonathan R. Delph ◽  
Gençalioğlu Kuşcu Gonca ◽  
Janne Blichert-Toft ◽  
...  

The Anatolia (Eurasia), Arabia, and Africa tec­tonic plates intersect in southeast Turkey, near the Gulf of İskenderun, forming a tectonically active and unstable triple junction (the A3 triple junction). The plate boundaries are marked by broad zones of major, dominantly left-lateral transform faults including the East Anatolian fault zone (the Anato­lia-Arabia boundary) and the Dead Sea fault zone (the Arabia-Africa boundary). Quaternary basalts occur locally within these “leaky” transform fault zones (similar to those observed within oceanic transform faults), providing evidence that mantle melting, basalt genesis, and eruption are linked to crustal deformation and faulting that extends into the upper mantle. We investigated samples of alkaline basalt (including basanite) from the Toprakkale and Karasu volcanic fields within a broad zone of transtension associated with these plate-boundary faults near the İskenderun and Amik Basins, respectively. Toprakkale basalts and basanites have 40Ar/39Ar plateau ages ranging from 810 ± 60 ka to 46 ± 13 ka, and Karasu volcanic field basalts have 40Ar/39Ar plateau ages ranging from 2.63 ± 0.17 Ma to 52 ± 16 ka. Two basanite samples within the Toprak­kale volcanic field have isotopic characteristics of a depleted mantle source, with 87Sr/86Sr of 0.703070 and 0.703136, 143Nd/144Nd of 0.512931 and 0.512893, 176Hf/177Hf of 0.283019 and 0.282995, 206Pb/204Pb of 19.087 and 19.155, and 208Pb/204Pb of 38.861 and 38.915. The 176Hf/177Hf ratios of Toprakkale basalts (0.282966–0.283019) are more radiogenic than Karasu basalts (0.282837–0.282965), with some overlap in 143Nd/144Nd ratios (0.512781–0.512866 vs. 0.512648–0.512806). Toprakkale 206Pb/204Pb ratios (19.025 ± 0.001) exhibit less variation than that observed for Karasu basalts (18.800–19.324), and 208Pb/204Pb values for Toprakkale basalts (38.978– 39.103) are slightly lower than values for Karasu basalts (39.100–39.219). Melting depths estimated for the basalts from both volcanic fields gener­ally cluster between 60 and 70 km, whereas the basanites record melting depths of ~90 km. Depth estimates for the basalts largely correspond to the base of a thin lithosphere (~60 km) observed by seismic imaging. We interpret the combined radio­genic isotope data (Sr, Nd, Hf, Pb) from all alkaline basalts to reflect partial melting at the base of the lithospheric mantle. In contrast, seismic imaging indicates a much thicker (>100 km) lithosphere beneath southern Anatolia, a substantial part of which is likely subducted African lithosphere. This thicker lithosphere is adjacent to the surface loca­tions of the basanites. Thus, the greater melting depths inferred for the basanites may include par­tial melt contributions either from the lithospheric mantle of the attached and subducting African (Cyprean) slab, or from partial melting of detached blocks that foundered due to convective removal of the Anatolian lithosphere and that subsequently melted at ~90 km depth within the asthenosphere. The Quaternary basalts studied here are restricted to a broad zone of transtension formed in response to the development of the A3 triple junction, with an earliest erupted age of 2.63 Ma. This indicates that the triple junction was well established by this time. While the current posi­tion of the A3 triple junction is near the Amik Basin, faults and topographic expressions indicate that inception of the triple junction began as early as 5 Ma in a position farther to the northeast of the erupted basalts. Therefore, the position of the A3 triple junction appears to have migrated to the southwest since the beginning of the Pliocene as the Anatolia-Africa plate boundary has adjusted to extrusion (tectonic escape) of the Anatolia plate. Establishment of the triple junction over the past 5 m.y. was synchronous with rollback of the Afri­can slab beneath Anatolia and associated trench retreat, consistent with Pliocene uplift in Cyprus and with the current positions of plate boundaries. The A3 triple junction is considered to be unstable and likely to continue migrating to the southwest for the foreseeable geologic future.


Lead isotopic compositions of young volcanic rocks from different tectonic environments have distinctive characteristics. Their differences are evaluated within the framework of global tectonics and mantle differentiation. Ocean island leads are in general more radiogenic than mid-ocean ridge basalt (m.o.r.b.) leads. They form linear trends on lead isotopic ratio plots. Many of the trends extend toward the field of m.o.r.b. On plots of 207 P b / 204 Pb against 206 Pb / 204 Pb, their slopes are generally close to 0.1. Island arc leads in general are confined between sediment and m.o.r.b. type leads with slopes of ca . 0.30 on a plot of 207 P b / 204 Pb against 206 Pb / 204 Pb. Pb, Sr and Nd isotopic data of Hawaiian volcanics are closely examined. Data from each island support a two-component mixing model. However, there is a lack of full range correlation between islands, indicating heterogeneity in the end members. This mixing model could also be extended to explain data from the Iceland-Reykjanes ridge, and from 45° N on the Atlantic Ridge. The observed chemical and isotopic heterogeneity in young volcanic rocks is considered to be a result of long-term as well as short-term mantle differentiation and mixing. Lead isotopic data from ocean islands are interpreted in terms of mantle evolution models that involve long-term (more than 2 Ga) mantle chemical and isotopic heterogeneity. Incompatible element enriched ‘plume’-type m.o.r.b. have Th/U ratios ca . 3.0 too low and Rb/Sr ratios ca . 0.04 too high to generate the observed 208 Pb and 87 Sr respectively for long periods of time. Elemental fractionation in the mantle must have occurred very recently. This conclusion also applies to mantle sources for ocean island alkali basalts and nephelinites. Depletion of incompatible elements in m.o.r.b. sources is most probably due to continuous extraction of silicate melt and/or fluid phase from the low-velocity zone throughout geological time. Data on Pb isotopes, Sr isotopes and trace elements on volcanic rocks from island arcs are evaluated in terms of mixing models involving three components derived from (1) sub-arc mantle wedge, (2) dehydration or partial melting of subducted ocean crust, and (3) continental crust contamination. In contrast to the relation between 87 Sr/ 86 Sr and 143 Nd / 144 Nd ratios of ocean volcanics, there is a general lack of correlation between Pb and Sr isotopic ratios except that samples with very radiogenic Pb ( 206 Pb / 204 Pb > 19.5) have low 87 Sr/ 87 Sr ratios (0.7028- 0.7035). These samples also have inferred source Th/U ratios (3.0-3.5) not high enough to support long-term growth of 208 Pb. Data suggest that their mantle sources have long-term integrated depletion in Rb, Th, U and light r.e.e. High 238 U / 204 Pb (y a)values required by the Pb isotopic data are most probably due to depletion of Pb by separation of a sulphide phase. Relations between Pb, Sr and Nd isotopic ratios of young volcanic rocks could be explained by simultaneous upward migration of silicate and/or fluid phase and downward migration of a sulphide phase in a differentiating mantle.ration of a sulphide phase in a differentiating mantle.


2020 ◽  
Author(s):  
Hai Zhou ◽  
Guochun Zhao ◽  
et al.

Table S1: Summary of the samples and sampling positions in this study (sampling sites are marked in Fig. 3); Table S2: U-Pb age data for zircons of (meta-)sedimentary and volcanic rocks in this study; Table S3: Lu-Hf isotopic data for zircons of (meta-)sedimentary and volcanic rocks in this study.


2003 ◽  
Vol 40 (6) ◽  
pp. 833-852 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
D Bosch ◽  
A Cadoux ◽  
A Narros ◽  
...  

The Slide Mountain Terrane consists of Devonian to Permian siliceous and detrital sediments in which are interbedded basalts and dolerites. Locally, ultramafic cumulates intrude these sediments. The Slide Mountain Terrane is considered to represent a back-arc basin related to the Quesnellia Paleozoic arc-terrane. However, the Slide Mountain mafic volcanic rocks exposed in central British Colombia do not exhibit features of back-arc basin basalts (BABB) but those of mid-oceanic ridge (MORB) and oceanic island (OIB) basalts. The N-MORB-type volcanic rocks are characterized by light rare-earth element (LREE)-depleted patterns, La/Nb ratios ranging between 1 and 2. Moreover, their Nd and Pb isotopic compositions suggest that they derived from a depleted mantle source. The within-plate basalts differ from those of MORB affinity by LREE-enriched patterns; higher TiO2, Nb, Ta, and Th abundances; lower εNd values; and correlatively higher isotopic Pb ratios. The Nd and Pb isotopic compositions of the ultramafic cumulates are similar to those of MORB-type volcanic rocks. The correlations between εNd and incompatible elements suggest that part of the Slide Mountain volcanic rocks derive from the mixing of two mantle sources: a depleted N-MORB type and an enriched OIB type. This indicates that some volcanic rocks of the Slide Mountain basin likely developed from a ridge-centered or near-ridge hotspot. The activity of this hotspot is probably related to the worldwide important mantle plume activity that occurred at the end of Permian times, notably in Siberia.


2021 ◽  
Author(s):  
Sergei Rasskazov ◽  
Irina Chuvashova ◽  
Tatiana Yasnygina ◽  
Elena Saranina

<p>The Nb/U~47 and Th/U~4 ratios are considered as indicative for the OIB source referred by some authors to lower mantle plumes that in fact have no specific geochemical signatures but HIMU component. The Th/U ratio may vary because of the different garnet–melt and/or clinopyroxene–melt partition coefficients of U and Th. Anomalously high or low Th/U values in rocks can also be related to the input or removal of U, the migration of which is controlled by its mobility under oxidizing conditions owing to the formation of water-soluble uranyl  compounds with hexavalent U. These variations definitely distinguish non-plume magmatic sources. The Th/U ratio decreases to 2.5 in the MORB source and increases to 6 in the continental lower crust one. We describe anomalous behavior of uranium in sources of Cenozoic basalts and basaltic andesites from Primorye, Lesser Khingan, Tunka Valley, as well as similar Cretaceous-Paleogene rocks from Tien Shan. Significant deviations of the Th/U and Nb/U ratios from the OIB values are characteristics mostly of garnet-free sources. The U-depleted and U-enriched signatures are used as sensitive indicators for deciphering crust–mantle transitional processes.</p><p>This work is supported by the RSF grant 18-77-10027.</p>


1998 ◽  
Vol 35 (5) ◽  
pp. 556-561 ◽  
Author(s):  
P J Patchett ◽  
G E Gehrels ◽  
C E Isachsen

Nd isotopic data are presented for a suite of metamorphic and plutonic rocks from a traverse across the Coast Mountains between Terrace and Prince Rupert, British Columbia, and for three contrasting batholiths in the Omineca Belt of southern Yukon. A presumed metamorphic equivalent of Jurassic volcanic rocks of the Stikine terrane gives epsilon Nd = +6, and a number of other metaigneous and metasedimentary rocks in the core of the Coast Mountains give epsilon Nd values from +3 to +7. A single metasedimentary rock approximately 3 km east of the Work Channel shear zone gives a epsilon Nd value of -9. Coast Belt plutons in the traverse yield epsilon Nd from -1 to +2. The Omineca Belt plutons give epsilon Nd from -10 to -17. All results are consistent with published data in demonstrating that (i) juvenile origins for both igneous and metamorphic rocks are common in the Coast Belt; (ii) representatives of a continental-margin sedimentary sequence with Precambrian crustal Nd are tectonically interleaved in the Coast Mountains; (iii) Coast Mountains plutons can be interpreted as derived from a blend of metamorphic rocks like those seen at the surface, or as arc-type melts contaminated with the older crustal component; and (iv) Omineca Belt plutons are dominated by remelted Precambrian crustal rocks.


Sign in / Sign up

Export Citation Format

Share Document