Nd isotopic characteristics of metamorphic and plutonic rocks of the Coast Mountains near Prince Rupert, British Columbia

1998 ◽  
Vol 35 (5) ◽  
pp. 556-561 ◽  
Author(s):  
P J Patchett ◽  
G E Gehrels ◽  
C E Isachsen

Nd isotopic data are presented for a suite of metamorphic and plutonic rocks from a traverse across the Coast Mountains between Terrace and Prince Rupert, British Columbia, and for three contrasting batholiths in the Omineca Belt of southern Yukon. A presumed metamorphic equivalent of Jurassic volcanic rocks of the Stikine terrane gives epsilon Nd = +6, and a number of other metaigneous and metasedimentary rocks in the core of the Coast Mountains give epsilon Nd values from +3 to +7. A single metasedimentary rock approximately 3 km east of the Work Channel shear zone gives a epsilon Nd value of -9. Coast Belt plutons in the traverse yield epsilon Nd from -1 to +2. The Omineca Belt plutons give epsilon Nd from -10 to -17. All results are consistent with published data in demonstrating that (i) juvenile origins for both igneous and metamorphic rocks are common in the Coast Belt; (ii) representatives of a continental-margin sedimentary sequence with Precambrian crustal Nd are tectonically interleaved in the Coast Mountains; (iii) Coast Mountains plutons can be interpreted as derived from a blend of metamorphic rocks like those seen at the surface, or as arc-type melts contaminated with the older crustal component; and (iv) Omineca Belt plutons are dominated by remelted Precambrian crustal rocks.

1969 ◽  
Vol 6 (3) ◽  
pp. 399-425 ◽  
Author(s):  
D. C. Findlay

The Tulameen Complex is a composite ultramafic-gabbroic intrusion that outcrops over 22 sq. mi. (57 km2) in the Southern Cordillera of British Columbia. The complex intruded Upper Triassic metavolcanic and metasedimentary rocks of the Nicola Group, and on the basis of geologic relations and a K–Ar age determination (186 m.y.) is tentatively dated as Late Triassic.The principal ultramafic units — dunite, olivine clinopyroxenite, and hornblende clinopyroxenite — form an elongate, non-stratiform body whose irregular internal structure is best explained by deformation contemporaneous with crystallization of the rocks. The derivation of the ultramafic rocks is attributed to fractional crystallization of an ultrabasic magma. The gabbroic mass, which consists of syenogabbro and syenodiorite, partly borders and partly overlies the ultramafic body and was apparently intruded by it.The ultramafic and gabbroic parts of the complex probably formed from separate intrusions of different magmas, but the two suites have sufficient mineralogical and chemical features in common to indicate an ultimate petrogenic affinity of the magmas. Comparison of the Tulameen rocks with nearby intrusions of the same general age, in particular the Copper Mountain stock, suggests that they are members of a regional suite of alkalic intrusions. The possibility is also raised that these intrusions may be comagmatic with the Nicola volcanic rocks.


1877 ◽  
Vol 4 (7) ◽  
pp. 314-317
Author(s):  
George M. Dawson

In Chile and adjacent regions of South America, Mr. Darwin, in his “Geological Observations,” has described a great series of Mesozoic rocks, which he calls the “porphyritic formation,” and which shows an interesting resemblance to certain rocks in British Columbia. These I had provisionally designated in my report in connexion with the Geological Survey of Canada for 1875, as the Porphyrite series, without at the time remembering Mr. Darwin's name for the Chilian rocks. Many of Mr. Darwin's descriptions of the rocks of Chile would apply word for word to those of British Columbia, where the formation would also appear to bear a somewhat similar relation to the Cascade or Coast Range, which that of Chile does to the Cordillera.


2011 ◽  
Vol 48 (6) ◽  
pp. 1050-1063 ◽  
Author(s):  
A.L. Stephenson ◽  
G.D. Spence ◽  
K. Wang ◽  
J.A. Hole ◽  
K.C. Miller ◽  
...  

In the BATHOLITHSonland seismic project, a refraction – wide-angle reflection survey was shot in 2009 across the Coast Mountains and Interior Plateau of central British Columbia. Part of the seismic profile crossed the Nechako Basin, a Jurassic–Cretaceous basin with potential for hydrocarbons within sedimentary strata that underlies widespread volcanic rocks. Along this 205 km-long line segment, eight large explosive shots were fired into 980 seismometers. Forward and inverse modelling of the traveltime data were conducted with two independent methods: ray-tracing based modelling of first and secondary arrivals, and a higher resolution wavefront-based first-arrival seismic tomography. Material with velocities less than 5.0 km/s is interpreted as sedimentary rocks of the Nechako Basin, while velocities from 5.0–6.0 km/s may correspond to interlayered sedimentary and volcanic rocks. The greatest thickness of sedimentary rocks in the basin is found in the central 110 km of the profile. Two sub-basins were identified in this region, with widths of 20–50 km and maximum sedimentary depths of 2.5 and 3.3 km. Such features are well-defined in the velocity model, since resolution tests indicate that features with widths greater than ∼13 km are reliable. Beneath the sedimentary rocks, seismic velocities increase more slowly with depth — from 6.0 km/s just below the basin to 6.3 km/s at ∼17 km in depth, and then to 6.8–7.0 km/s at the base of the crust. The Moho is found at a depth of 33.5–35 km beneath the profile, and mantle velocities are high at 8.05–8.10 km/s.


1980 ◽  
Vol 17 (6) ◽  
pp. 681-689 ◽  
Author(s):  
George Plafker ◽  
Travis Hudson

A low-grade metamorphic sequence consisting of thick mafic volcanic rocks overlain by calcareous flysch with very minor limestone underlies much of the Chilkat Peninsula. Fossils collected from both units are of Triassic age, probably late Karnian. This sequence appears to be part of the Taku terrane, a linear tectono-stratigraphic belt that now can be traced for almost 700 km through southeastern Alaska to the Kelsall Lake area of British Columbia. The age and gross lithology of the Chilkat Peninsula sequence are comparable to Upper Triassic rocks that characterize the allochthonous tectono-stratigraphic terrane named Wrangellia. This suggests either that the two terranes are related in their history or that they are allochthonous with respect to one another and coincidentally evolved somewhat similar sequences in Late Triassic time.


1995 ◽  
Vol 32 (10) ◽  
pp. 1759-1776 ◽  
Author(s):  
J. Brian Mahoney ◽  
Richard M. Friedman ◽  
Sean D. McKinley

The Harrison Lake Formation is an Early to Middle Jurassic volcanic-arc assemblage unconformably overlying Triassic oceanic basement in the eastern Coast Belt of southwestern British Columbia. The formation is subdivided into four members including, in ascending order, the Celia Cove Member (conglomerate), the Francis Lake Member (fine-grained strata), the Weaver Lake Member (flows and breccias), and the Echo Island Member (pyroclastic and epiclastic strata). New biostratigraphic constraints pinpoint the initiation of volcanism to late early Toarcian. U–Pb geochronology demonstrates the arc was active until at least late Bajocian–early Bathonian time (166.0 ± 0.4 Ma), and that the timing of arc volcanism strongly overlaps emplacement of both hypabyssal intrusions (Hemlock Valley stock) and deep-seated plutons (Mount Jasper pluton) within and adjacent to the arc. Geochemical data indicate the arc is of medium- to high-K calc-alkaline affinity, and is strongly light rare earth element enriched (LaN/YbN = 1.5 – 2.5). Nd and Sr isotopic data from primary volcanic rocks demonstrate the juvenile nature of the magmatic system, but isotopic data from associated fine-grained sedimentary rocks suggest temporally controlled variations in isotopic composition interpreted to represent two-component mixing between juvenile volcanic detritus and a more evolved detrital component. The succession of facies in the Harrison Lake Formation records initial basin subsidence in the Early Jurassic, initiation of explosive volcanism in the late early Toarcian, a change to effusive volcanism in the early Aalenian, and late-stage explosive volcanism in the late Bajocian. The Harrison Lake Formation contains mesoscopic folds and overturned bedding that are absent in the overlying Callovian Mysterious Creek Formation, strongly suggesting the existence of a regional Bathonian deformational event in the southern Coast Belt.


1990 ◽  
Vol 27 (11) ◽  
pp. 1456-1461 ◽  
Author(s):  
R. M. Friedman ◽  
J. W. H. Monger ◽  
H. W. Tipper

A new U–Pb date of [Formula: see text] for foliated felsic metavolcanic rocks of the Bowen Island Group, from Mount Elphinstone in the southwesternmost Coast Mountains of British Columbia, indicates that there the age of this hitherto undated unit is early Middle Jurassic. These rocks grade along strike to the north-northwest into a more sedimentary facies, which north of Jervis Inlet contains a probable Sinemurian (Lower Jurassic) ammonite. The Bowen Island Group thus appears to include Lower and Middle Jurassic rocks and to be coeval in part with volcanic rocks of the Bonanza Formation on Vancouver Island to the west and the Harrison Lake Formation within the central Coast Mountains 75 km to the east.


1970 ◽  
Vol 7 (2) ◽  
pp. 376-405 ◽  
Author(s):  
W. W. Hutchison

The metamorphic framework in Prince Rupert – Skeena region of the Coast Mountains of British Columbia comprises schist, gneiss, and migmatite displaying progressive regional metamorphism that overlaps the Barrovian and Idahoan Facies Series. Although part of the circum-Pacific metamorphic zone, the Coast Mountain metamorphic belt is apparently not paired. Plutonic rocks, which were probably an integral part of the early metamorphic framework, have apparently been mobilized during metamorphism and continued to move out of their original environment while metamorphism waned, some even deforming the pre-existing fabric.Within the framework, four main plutonic styles have been recognized:1) Autochthonous, migmatitic, plutonic complexes.2) Para-autochthonous, steep-walled (tadpole) plutons.3) Para-autochthonous, tongue-shaped, recumbent plutons.4) Allochthonous, intrusive plutons.Quartz diorite and granodiorite are the most common plutonic rocks. Diorite and quartz monzonite are less common: gabbro and especially granite are rare.In the course of moving from the sites of generation to the zones of emplacement, the plutonic rock became:1) more homogeneous.2) less migmatitic and impoverished in inclusions.3) less foliated.4) more acidic, more biotite-rich.5) a rock containing plagioclase of lower average anorthite content and more complex oscillatory zoned crystals.The complex oscillatory zoning appears in a gross way to reflect the variable history accompanying (pulsative ?) movement during crystallization.Time of emplacement of most of the plutonic rock is not known. The potassium–argon age dates (between 53° N and 55° N) display a consistent pattern, with a westerly zone yielding the oldest dates (84 to 140 m.y.), a median zone, intermediate dates (64 to 79 m.y.) and the eastern zone, youngest dates (chiefly 40 to 50 m.y.). These dates may reflect sequential emplacement from west to east but some evidence also suggests that they may reflect sequential uplift and unroofing from west to east.


1975 ◽  
Vol 12 (11) ◽  
pp. 1895-1909 ◽  
Author(s):  
D. J. Tempelman-Kluit ◽  
R. K. Wanless

Forty-four new potassium–argon age determinations on minerals of metamorphic and igneous rocks from the Yukon Crystalline Terrane define the timing of the three most recent thermal events affecting this region. The oldest, 160 to 170 Ma ago, involved weak retrograde metamorphism of igneous and metamorphic rocks and coincides with the intrusion of batholiths of pink quartz monzonite. The next event, 90 to 100 Ma ago, reflects the emplacement of batholiths of the Coffee Creek quartz monzonite suite. The youngest thermal episode, 50 to 60 Ma ago, marks the time when the Nisling Range alaskite, with its porphyry dyke swarms and explosive acid volcanic rocks, was emplaced and when the K–Ar system of the Ruby Range Batholith was thermally reset. The data provide a younger limit to the age of the oldest Mesozoic plutonic rocks, the Klotassin suite, but they do not define its time of emplacement.


1973 ◽  
Vol 10 (10) ◽  
pp. 1508-1518 ◽  
Author(s):  
Andrew V. Okulitch

The Kobau Group, found in south-central British Columbia, consists of highly deformed, low-grade metamorphic rocks derived from a succession of sedimentary and basic volcanic rocks of pre-Cretaceous, likely post-Devonian age. Deformation began in Carboniferous times and recurred with decreasing intensity up to the Tertiary Period. Possible correlative successions are found surrounding Mount Kobau. These include possibly late Paleozoic formations west and northwest of Mount Kobau, the Carboniferous to Permian Anarchist Group found south of the 49th parallel and east of the Okanagan Valley, the pre-Upper Triassic, possibly Mississippian Chapperon Group west of Vernon, and parts of the Shuswap Metamorphic Complex east of the Okanagan Valley. Prior to deposition of the Kobau Group, part of the Shuswap Complex was subjected to deformation, presumably in mid-Paleozoic time.


Sign in / Sign up

Export Citation Format

Share Document