scholarly journals Supplemental Material: 40Ar/39Ar age evidence for an impact-generated hydrothermal system in the Devonian Siljan crater, Sweden

2021 ◽  
Author(s):  
Maria Herrmann

Supplemental Material 1: Item S1 (additional information on <sup>40</sup>Ar/<sup>39</sup>Ar age spectra of biotite), and Item S2 (additional information on <sup>40</sup>Ar/<sup>39</sup>Ar age spectra of amphibole); and Supplemental Material 2: Tables S1–S4 (Ar isotopic ratios, apparent ages, J values, Ar isotopic abundances, and Ca/K and Cl/K ratios). <br>

2021 ◽  
Author(s):  
Maria Herrmann

Supplemental Material 1: Item S1 (additional information on <sup>40</sup>Ar/<sup>39</sup>Ar age spectra of biotite), and Item S2 (additional information on <sup>40</sup>Ar/<sup>39</sup>Ar age spectra of amphibole); and Supplemental Material 2: Tables S1–S4 (Ar isotopic ratios, apparent ages, J values, Ar isotopic abundances, and Ca/K and Cl/K ratios). <br>


2016 ◽  
Vol 88 (7) ◽  
pp. 689-699 ◽  
Author(s):  
Tyler B. Coplen ◽  
Norman E. Holden

Abstract The Commission on Isotopic Abundances and Atomic Weights uses annotations given in footnotes that are an integral part of the Tables of Standard Atomic Weights to alert users to the possibilities of quite extraordinary occurrences, as well as sources with abnormal atomic-weight values outside an otherwise acceptable range. The basic need for footnotes to the Standard Atomic Weights Table and equivalent annotations to the Table of Isotopic Compositions of the Elements arises from the necessity to provide users with information that is relevant to one or more elements, but that cannot be provided using numerical data in columns. Any desire to increase additional information conveyed by annotations to these Tables is tempered by the need to preserve a compact format and a style that can alert users, who would not be inclined to consult either the last full element-by-element review or the full text of a current Standard Atomic Weights of the Elements report. Since 1989, the footnotes of the Tables of Standard Atomic Weights and the annotations in column 5 of the Table of Isotopic Compositions of the Elements have been harmonized by use of three lowercase footnotes, “g”, “m”, and “r”, that signify geologically exceptionally specimens (“g”), modified isotopic compositions in material subjected to undisclosed or inadvertent isotopic fractionation (“m”), and the range in isotopic composition of normal terrestrial material prevents more precise atomic-weight value being given (“r”). As some elements are assigned intervals for their standard atomic-weight values (applies to 12 elements since 2009), footnotes “g” and “r” are no longer needed for these elements.


1987 ◽  
Vol 120 ◽  
pp. 461-467
Author(s):  
V. Vanysek

It is belived that the unprocessed material of the solar nebula may be preserved in comets. Thus the data concerning the chemical composition and the abundance of stable isotopes in these primitive bodies are of some importance in cosmological and cosmogonical context. Although the isotopic abundance in the small bodies of the Solar System are poorly known, owing to the forthcoming Halley fly-by missions, the discussion as whether or not the comets have preserved the cosmic isotopic ratio in their nuclei became more relevant. From this point of view expected data of the cosmologically and cosmogonically significant isotopic ratios of stable isotopes of the light elements in comets are discussed.


Author(s):  
Norman Herz ◽  
Ervan G. Garrison

Isotopic ratios of elements in natural materials on the earth either have been constant in time and space or have varied as a result of radioactive decay or geochemical fractionation. Elements which show variations in isotopic abundances in different samples and the reasons for these variations have helped resolve many geological and archaeological problems. Radioactive decay has provided absolute dating clocks: for archaeology, the most useful systems have been associated with 14C, 40Ar, and U-disequilibrium series. Variations in isotopic ratios of the stable elements H, C, O, N, S, Sr, and Pb have helped solve problems of provenance, paleoenvironments, and paleodiets. The rationale for isotopic variations of individual elements will determine the types of applications to archaeological geology. The most important applications are the determinations of artifact signatures, paleodiet, and paleoenvironment. Isotopic fractionation of light elements by physical, chemical, and biological processes is controlled by those thermodynamic properties which are determined by atomic weight and electronic configuration. Thermodynamic properties of molecules that are mass and temperature dependent include energy, which decreases with decreasing temperature, and vibrational frequency, which varies inversely in proportion to the square root of the reduced mass. Easily measurable isotopic separation is generally restricted to the lighter elements, that is, with atomic weights less than 40. Because isotopic fractionation is mass dependent, the separation is greater for elements with the greater mass difference between isotopes. The greatest separation is expected for hydrogen (mass 1) versus deuterium (mass 2); the other light elements commonly have isotopic differences closer to 10%. Thus, the lighter isotopes have higher vibrational energy and their chemical bonds are more easily broken. The different reactivity of lighter versus heavier isotopes of an element is responsible for their separation during geochemical and biological processes. Thermodynamic behavior has been considered a principal cause for variations, not in isotopic abundances of the heavier elements Sr and Pb, but rather in abundances of their parent radionuclides: Rb for Sr and U and Th for Pb. Recently, however, P. Budd and others suggested that under nonequilibrium conditions, fractionation could theoretically take place among the lead isotopes.


2020 ◽  
Vol 642 ◽  
pp. A77 ◽  
Author(s):  
Ya. V. Pavlenko ◽  
Sergei N. Yurchenko ◽  
Laura K. McKemmish ◽  
Jonathan Tennyson

Context. We used the new ExoMol TiO rovibronic line lists to identify and model TiO isotopologue features in spectra of M dwarfs. Aims. We investigate problems involving the computation of electronic bands for different isotopologues of TiO by modelling optical spectra of late-type stars. Based on this, we determine their Ti isotopic abundances and compare the TiO isotopologue spectra computed using line lists by different authors. Methods. We fitted theoretical synthetic spectra to the observed stellar molecular bands of TiO. We modelled spectra of two M dwarfs, GJ 15A (M1V) and GJ 15B (M3 V), to determine Ti isotopic ratios in their atmospheres. Results. We demonstrate the accuracy of the ExoMol TOTO line list for different isotopologues of TiO and the possibility of determining accurate Ti isotope abundances in a number of spectral ranges. The 7580–7594 Å spectral range seems particularly useful, with two atomic lines of Fe I and molecular band heads of 50Ti O, 49Ti O, 48Ti O, and 47Ti O clearly observable in our two M-dwarf spectra. We determine non-solar Ti isotopic ratios of 46Ti, 47Ti, 48Ti, 49Ti, and 50Ti of 7.9, 5.2, 72.8, 7.9, and 6.2 for GJ 15A and 7.4, 4.2, 76.6, 5.8, and 6.0 for GJ 15B with an accuracy of ±0.2. [Ti] = 0.040 and 0.199 and within an accuracy of ±0.10 were also determined for GJ 15A and GJ 15B, respectively. Conclusions. We find that the ExoMol TOTO TiO line list (a) describes the fine details in line position and intensity of the M-dwarf spectra better than other available TiO line lists, (b) correctly reproduces the positions and intensities of the TiO isotopologue band heads observed in M-dwarf spectra, and (c) can be used to determine Ti isotope abundances in atmospheres of M stars.


1979 ◽  
Vol 46 ◽  
pp. 368
Author(s):  
Clinton B. Ford

A “new charts program” for the Americal Association of Variable Star Observers was instigated in 1966 via the gift to the Association of the complete variable star observing records, charts, photographs, etc. of the late Prof. Charles P. Olivier of the University of Pennsylvania (USA). Adequate material covering about 60 variables, not previously charted by the AAVSO, was included in this original data, and was suitably charted in reproducible standard format.Since 1966, much additional information has been assembled from other sources, three Catalogs have been issued which list the new or revised charts produced, and which specify how copies of same may be obtained. The latest such Catalog is dated June 1978, and lists 670 different charts covering a total of 611 variables none of which was charted in reproducible standard form previous to 1966.


Author(s):  
G. Lehmpfuhl

Introduction In electron microscopic investigations of crystalline specimens the direct observation of the electron diffraction pattern gives additional information about the specimen. The quality of this information depends on the quality of the crystals or the crystal area contributing to the diffraction pattern. By selected area diffraction in a conventional electron microscope, specimen areas as small as 1 µ in diameter can be investigated. It is well known that crystal areas of that size which must be thin enough (in the order of 1000 Å) for electron microscopic investigations are normally somewhat distorted by bending, or they are not homogeneous. Furthermore, the crystal surface is not well defined over such a large area. These are facts which cause reduction of information in the diffraction pattern. The intensity of a diffraction spot, for example, depends on the crystal thickness. If the thickness is not uniform over the investigated area, one observes an averaged intensity, so that the intensity distribution in the diffraction pattern cannot be used for an analysis unless additional information is available.


Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


Author(s):  
Oliver C. Wells

The low-loss electron (LLE) image in the scanning electron microscope (SEM) is useful for the study of uncoated photoresist and some other poorly conducting specimens because it is less sensitive to specimen charging than is the secondary electron (SE) image. A second advantage can arise from a significant reduction in the width of the “penetration fringe” close to a sharp edge. Although both of these problems can also be solved by operating with a beam energy of about 1 keV, the LLE image has the advantage that it permits the use of a higher beam energy and therefore (for a given SEM) a smaller beam diameter. It is an additional attraction of the LLE image that it can be obtained simultaneously with the SE image, and this gives additional information in many cases. This paper shows the reduction in penetration effects given by the use of the LLE image.


Sign in / Sign up

Export Citation Format

Share Document