scholarly journals A Simplified Method for Predicting the Effect of Temperature on the Separation Performance by Chromatography

2021 ◽  
Vol 22 (2) ◽  
pp. 53-57
Author(s):  
Shinya NOZAKI ◽  
Noriko YOSHIMOTO ◽  
Shuichi YAMAMOTO
2016 ◽  
Vol 11 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Seyed Saeid Hosseini ◽  
Javad Aminian Dehkordi ◽  
Prodip K. Kundu

Abstract Due to special features, modules comprising asymmetric hollow fiber membranes are widely used in various industrial gas separation processes. Accordingly, numerous mathematical models have been proposed for predicting and analyzing the performance. However, majority of the proposed models for this purpose assume that membrane permeance remains constant upon changes in temperature and pressure. In this study, a mathematical model is proposed by taking into account non-ideal effects including changes in pressure and temperature in both sides of hollow fibers, concentration polarization and Joule-Thomson effects. Finite element method is employed to solve the governing equations and model is validated using experimental data. The effect of temperature and pressure dependency of permeance and separation performance of hollow fiber membrane modules is investigated in the case of CO2/CH4. The effect of temperature and pressure dependence of membrane permeance is studied by using type Arrhenius type and partial immobilization equations to understand which form of the equations fits experimental data best. Findings reveal that the prediction of membrane performance for CO2/CH4 separation is highly related to pressure and temperature; the models considering temperature and pressure dependence of membrane permeance match experimental data with higher accuracy. Also, results suggest that partial immobilization model represents a better prediction to the experimental data than Arrhenius type equation.


2019 ◽  
Vol 9 (15) ◽  
pp. 2994
Author(s):  
Hassina Semghouni ◽  
Said Bey ◽  
Alberto Figoli ◽  
Alessandra Criscuoli ◽  
Francesca Russo ◽  
...  

A new multiframe flat sheet membrane contactor module containing several flat membranes was designed and implemented. Each frame contains a chamber (central hole) in which the feed and the receiving phases are put in contact with polyvinyl chloride (PVC)/Aliquat-336 polymeric flat sheet membranes for Cr(VI) removal from aqueous solutions (feed phase). To evaluate the efficiency of the system, the experimental design methodology was used to analyze the effect of temperature (T, °C), PVC/Aliquat-336 ratio, and Cr (VI) concentration in the feed phase and the concentration of sodium chloride (NaOH-NaCl) in the receiving phase. Two representative mathematical models of the two responses (extraction and back-extraction) were respectively obtained. A good correlation between the experimental results and those predicted (RS2 = 97.77 and RR2 = 97.87) was achieved, allowing the optimization of the different factors selected for each response, separately. The proposed system showed a good separation performance, leading to Cr(VI) extractions up to 93% when working at the optimized operating conditions.


Author(s):  
K. Yoshida ◽  
F. Murata ◽  
S. Ohno ◽  
T. Nagata

IntroductionSeveral methods of mounting emulsion for radioautography at the electron microscopic level have been reported. From the viewpoint of quantitative radioautography, however, there are many critical problems in the procedure to produce radioautographs. For example, it is necessary to apply and develop emulsions in several experimental groups under an identical condition. Moreover, it is necessary to treat a lot of grids at the same time in the dark room for statistical analysis. Since the complicated process and technical difficulties in these procedures are inadequate to conduct a quantitative analysis of many radioautographs at once, many factors may bring about unexpected results. In order to improve these complicated procedures, a simplified dropping method for mass production of radioautographs under an identical condition was previously reported. However, this procedure was not completely satisfactory from the viewpoint of emulsion homogeneity. This paper reports another improved procedure employing wire loops.


Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


Author(s):  
Yeshayahu Talmon

To bring out details in the fractured surface of a frozen sample in the freeze fracture/freeze-etch technique,the sample or part of it is warmed to enhance water sublimation.One way to do this is to raise the temperature of the entire sample to about -100°C to -90°C. In this case sublimation rates can be calculated by using plots such as Fig.1 (Talmon and Thomas),or by simplified formulae such as that given by Menold and Liittge. To achieve higher rates of sublimation without heating the entire sample a radiative heater can be used (Echlin et al.). In the present paper a simplified method for the calculation of the rates of sublimation under a constant heat flux F [W/m2] at the surface of the sample from a heater placed directly above the sample is described.


2005 ◽  
Vol 173 (4S) ◽  
pp. 140-141
Author(s):  
Mariana Lima ◽  
Celso D. Ramos ◽  
Sérgio Q. Brunetto ◽  
Marcelo Lopes de Lima ◽  
Carla R.M. Sansana ◽  
...  

1990 ◽  
Vol 80 (3) ◽  
pp. 431-436 ◽  
Author(s):  
Isabelle Delvallee ◽  
Annie Paffen ◽  
Geert-Jan De Klerk

Sign in / Sign up

Export Citation Format

Share Document