Modulation of enzymatic activity of dengue virus nonstructural protein NS3 nucleoside triphosphatase/helicase by poly(U)

2013 ◽  
Vol 78 (8) ◽  
pp. 925-932 ◽  
Author(s):  
M. Junaid ◽  
C. Angsuthanasombat ◽  
J. E. S. Wikberg ◽  
N. Ali ◽  
G. Katzenmeier
Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1393
Author(s):  
Thanyaporn Dechtawewat ◽  
Sittiruk Roytrakul ◽  
Yodying Yingchutrakul ◽  
Sawanya Charoenlappanit ◽  
Bunpote Siridechadilok ◽  
...  

Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 216
Author(s):  
Alanna C. Tseng ◽  
Vivek R. Nerurkar ◽  
Kabi R. Neupane ◽  
Helmut Kae ◽  
Pakieli H. Kaufusi

West Nile virus (WNV) nonstructural protein 3 (NS3) harbors the viral triphosphatase and helicase for viral RNA synthesis and, together with NS2B, constitutes the protease responsible for polyprotein processing. NS3 is a soluble protein, but it is localized to specialized compartments at the rough endoplasmic reticulum (RER), where its enzymatic functions are essential for virus replication. However, the mechanistic details behind the recruitment of NS3 from the cytoplasm to the RER have not yet been fully elucidated. In this study, we employed immunofluorescence and biochemical assays to demonstrate that NS3, when expressed individually and when cleaved from the viral polyprotein, is localized exclusively to the cytoplasm. Furthermore, NS3 appeared to be peripherally recruited to the RER and proteolytically active when NS2B was provided in trans. Thus, we provide evidence for a potential additional role for NS2B in not only serving as the cofactor for the NS3 protease, but also in recruiting NS3 from the cytoplasm to the RER for proper enzymatic activity. Results from our study suggest that targeting the interaction between NS2B and NS3 in disrupting the NS3 ER localization may be an attractive avenue for antiviral drug discovery.


2015 ◽  
Vol 89 (13) ◽  
pp. 6746-6760 ◽  
Author(s):  
Nenavath Gopal Naik ◽  
Huey-Nan Wu

ABSTRACTDengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, andtrans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites.In vivoprotein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex.IMPORTANCEThis is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation machinery in both mammalian and mosquito hosts. Four intragenic mutations were found to compensate for replication and subsequent viral production deficiencies without creating novel N-glycosylation sites or modulating the stabilities of the protein, suggesting that glycans may be involved in maintaining the NS4B protein conformation. NS4B glycans may be necessary elements of the viral life cycle, but compensatory mutations can circumvent their requirement. This novel finding may have broader implications in flaviviral biology as the most likely glycan at Asn-62 of NS4B is conserved in DENV serotypes and in some related flaviviruses.


2015 ◽  
Vol 89 (14) ◽  
pp. 7170-7186 ◽  
Author(s):  
Laurent Chatel-Chaix ◽  
Wolfgang Fischl ◽  
Pietro Scaturro ◽  
Mirko Cortese ◽  
Stephanie Kallis ◽  
...  

ABSTRACTDengue virus (DENV) infection causes the most prevalent arthropod-borne viral disease worldwide. Approved vaccines are not available, and targets suitable for the development of antiviral drugs are lacking. One possible drug target is nonstructural protein 4B (NS4B), because it is absolutely required for virus replication; however, its exact role in the DENV replication cycle is largely unknown. With the aim of mapping NS4B determinants critical for DENV replication, we performed a reverse genetic screening of 33 NS4B mutants in the context of an infectious DENV genome. While the majority of these mutations were lethal, for several of them, we were able to select for second-site pseudoreversions, most often residing in NS4B and restoring replication competence. To identify all viral NS4B interaction partners, we engineered a fully viable DENV genome encoding an affinity-tagged NS4B. Mass spectrometry-based analysis of the NS4B complex isolated from infected cells identified the NS3 protease/helicase as a major interaction partner of NS4B. By combining the genetic complementation map of NS4B with a replication-independent expression system, we identified the NS4B cytosolic loop—more precisely, amino acid residue Q134—as a critical determinant for NS4B-NS3 interaction. An alanine substitution at this site completely abrogated the interaction and DENV RNA replication, and both were restored by pseudoreversions A69S and A137V. This strict correlation between the degree of NS4B-NS3 interaction and DENV replication provides strong evidence that this viral protein complex plays a pivotal role during the DENV replication cycle, hence representing a promising target for novel antiviral strategies.IMPORTANCEWith no approved therapy or vaccine against dengue virus infection, the viral nonstructural protein 4B (NS4B) represents a possible drug target, because it is indispensable for virus replication. However, little is known about its precise structure and function. Here, we established the first comprehensive genetic interaction map of NS4B, identifying amino acid residues that are essential for virus replication, as well as second-site mutations compensating for their defects. Additionally, we determined the NS4B viral interactome in infected cells and identified the NS3 protease/helicase as a major interaction partner of NS4B. We mapped residues in the cytosolic loop of NS4B as critical determinants for interaction with NS3, as well as RNA replication. The strong correlation between NS3-NS4B interaction and RNA replication provides strong evidence that this complex plays a pivotal role in the viral replication cycle, hence representing a promising antiviral drug target.


2012 ◽  
Vol 84 (3) ◽  
pp. 490-499 ◽  
Author(s):  
Marine Steidel ◽  
Romain Fragnoud ◽  
Michelle Guillotte ◽  
Céline Roesch ◽  
Sandrine Michel ◽  
...  

2002 ◽  
Vol 186 (8) ◽  
pp. 1165-1168 ◽  
Author(s):  
Daniel H. Libraty ◽  
Paul R. Young ◽  
Darren Pickering ◽  
Timothy P. Endy ◽  
Siripen Kalayanarooj ◽  
...  

2010 ◽  
Vol 33 (6) ◽  
pp. e75-e80 ◽  
Author(s):  
Yang Xiao-meng ◽  
Jiang Li-fang ◽  
Tang Yun-xia ◽  
Yin Yue ◽  
Liu Wen-quan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document