Long-term Arctic homogenized radiosondes

Author(s):  
Michael Blaschek ◽  
Federico Ambrogi ◽  
Leopold Haimberger

<p>Radiosonde measurements are potentially valuable indicators of upper air climate change because of their unique long-term availability and their high vertical extent and resolution. The radiosonde network, however, is not a long-term stable measurement system, since it was designed for operational use. Changes in the observation system are frequent and surf the purpose of competitive daily weather prediction, but result in more or less clear breakpoints in the observed long-term time series. These artificial biases need to be removed. We apply a bias adjustment scheme for radiosonde temperatures and humidity based on departures from a recent reanalysis, ERA5 potentially back to 1950. Newly digitized and recovered radiosonde data have been used within ERA5 for the first time. We present long-term bias adjustments and trends as preliminary results. In particular, we focus on the water vapour transport into the Arctic as a result of polar amplification and meridional heat exchange.</p>

2020 ◽  
Author(s):  
Melanie Lauer ◽  
Annette Rinke ◽  
Irina Gorodetskaya ◽  
Susanne Crewell

<p>There are many factors which could contribute to the Arctic warming: feedback processes like the lapse rate and ice-albedo feedback, the increasing downward longwave radiation caused by clouds and water vapour, and the reduction of sea ice in summer that leads to absorption of solar radiation and increase in local evaporation and more clouds. But also the atmospheric moisture transport from the lower latitudes can contribute to the surface warming in high-latitudes. This poleward moisture transport is mostly accomplished by extra-tropical cyclones, with especially strong contribution by the Atmospheric Rivers (ARs). ARs are long, narrow bands of enhanced water vapour transport which are responsible for over 90% of the poleward water vapour transport in and across mid-latitudes. Furthermore, they are responsible for producing significant levels of rain and snow. In addition, the greenhouse effect of water vapour and the formation of clouds increase the downward longwave radiation which can cause a thinning and melting of Arctic sea ice and snow.</p><p>In this study, we investigate the contribution of ARs to Arctic precipitation. Firstly, we look into different case studies for which observational data from the campaigns within the Collaborative Research Center “Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)<sup>3</sup>” exist. The data include enhanced observations at/around Svalbard performed during the ACLOUD and the AFLUX campaigns.</p><p>Previous studies have shown that ARs reaching into the Arctic have different origins, including the Atlantic and the Pacific pathways and also Siberia. Here we examine which pathway is more common and which one transports more moisture into the Arctic for these case studies by using existing AR catalogues from global and polar-specific algorithms. Furthermore, the variability of precipitation influences the surface mass and energy balance of polar sea ice and ice sheets. Therefore, we will analyse the influence of ARs on precipitation in terms of frequency, intensity, and type of precipitation (rain or snow) for the different case studies. For this purpose, we will use reanalyses and observational data for the water vapour transport, total precipitation, rain and snow profiles.The occurrence of ARs and its influence on precipitation will be extended from case studies to the long-term statistics (for at least 10 years).</p>


2015 ◽  
Vol 49 (2) ◽  
pp. 112-121
Author(s):  
Stephen R. Piotrowicz ◽  
David M. Legler

AbstractThe Global Ocean Observing System (GOOS) is the international observation system that ensures long-term sustained ocean observations. The ocean equivalent of the atmospheric observing system supporting weather forecasting, GOOS, was originally developed to provide data for weather and climate applications. Today, GOOS data are used for all aspects of ocean management as well as weather and climate research and forecasting. National Oceanic and Atmospheric Administration (NOAA), through the Climate Observation Division of the Office of Oceanic and Atmospheric Research/Climate Program Office, is a major supporter of the climate component of GOOS. This paper describes the eight elements of GOOS, and the Arctic Observing Network, to which the Climate Observation Division is a major contributor. In addition, the paper addresses the evolution of the observing system as rapidly evolving new capabilities in sensors, platforms, and telecommunications allow observations at unprecedented temporal and spatial scales with the accuracy and precision required to address questions of climate variability and change.


2014 ◽  
Vol 11 (13) ◽  
pp. 3547-3602 ◽  
Author(s):  
P. Ciais ◽  
A. J. Dolman ◽  
A. Bombelli ◽  
R. Duren ◽  
A. Peregon ◽  
...  

Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.


2013 ◽  
Vol 26 (14) ◽  
pp. 5205-5219 ◽  
Author(s):  
Tiina Nygård ◽  
Teresa Valkonen ◽  
Timo Vihma

Abstract Humidity inversions are nearly permanently present in the coastal Antarctic atmosphere. This is shown based on an investigation of statistical characteristics of humidity inversions at 11 Antarctic coastal stations using radiosonde data from the Integrated Global Radiosonde Archive (IGRA) from 2000 to 2009. The humidity inversion occurrence was highest in winter and spring, and high atmospheric pressure and cloud-free conditions generally increased the occurrence. A typical humidity inversion was less than 200 m deep and 0.2 g kg−1 strong, and a typical humidity profile contained several separate inversion layers. The inversion base height had notable seasonal variations, but generally the humidity inversions were located at higher altitudes than temperature inversions. Roughly half of the humidity inversions were associated with temperature inversions, especially near the surface, and humidity and temperature inversion strengths as well as depths correlated at several stations. On the other hand, approximately 60% of the humidity inversions were accompanied by horizontal advection of water vapor increasing with height, which is also a probable factor supporting humidity inversions. The spatial variability of humidity inversions was linked to the topography and the water vapor content of the air. Compared to previous results for the Arctic, the most striking differences in humidity inversions in the Antarctic were a much higher frequency of occurrence in summer, at least under clear skies, and a reverse seasonal cycle of the inversion height. The results can be used as a baseline for validation of weather prediction and climate models and for studies addressing changes in atmospheric moisture budget in the Antarctic.


2009 ◽  
Vol 48 (1) ◽  
pp. 24-40 ◽  
Author(s):  
Richard Dworak ◽  
Jeffrey R. Key

Abstract Recent studies have shown that the Arctic climate has changed markedly over the past 20 years. Two major reanalysis products that can be used for studying recent changes unfortunately exhibit relatively large errors in the wind field over the Arctic where there are few radiosonde data available for assimilation. At least 10 numerical weather prediction centers worldwide have demonstrated that satellite-derived polar winds have a positive impact on global weather forecasts. The impact on reanalyses should be similar. Therefore, a polar wind dataset spanning more than 20 years was generated using Advanced Very High Resolution Radiometer (AVHRR) data. Comparisons with winds from radiosondes show biases in the AVHRR-derived winds of 0.1–0.8 m s−1, depending on the level. In addition, AVHRR has lower root-mean-square speed errors and speed biases than the 40-yr ECMWF reanalysis product (ERA-40) when compared with rawinsondes not assimilated into the reanalysis. Therefore, it is recommended that the historical AVHRR polar winds be assimilated into future versions of the reanalysis products. The authors also explore possible kinematic reasons for the disparities between ERA-40 and AVHRR wind fields. AVHRR and ERA-40 speed and direction differences for various kinematic flow features are investigated. Results show that, on average, AVHRR winds are faster in jet streams and ridges but are slower in troughs and jet exit regions. The results from this study could lead to a better dynamical understanding of why the reanalysis product produces a less-accurate wind vector field over regions that are void of radiosonde data.


2014 ◽  
Vol 18 (1) ◽  
pp. 71-79
Author(s):  
Subhasis Das ◽  
V. K. Kothari

The moisture vapour permeability properties of a series of almost similar polyesterviscose (P/V) and polyester-cotton (P/C) blended fabrics are investigated. The water vapour transport rate greatly differs depending on the principle of the test methods, even when other parameters are nearly identical, such as air permeability, areal density, porosity and thickness. The water absorption characteristics of fibre seem to be the most important in determining the overall water vapour transport rate. Substitution of polyester for viscose and cotton in P/V and P/C blended fabrics respectively, reduces the water transport rate of the fabrics in a long term method. It is found that the P/C blended fabrics show greater water vapour transport than the corresponding P/V fabrics when a long term test method is used; however, the P/V fabrics show relatively higher water vapour permeability than the P/C fabrics when short duration tests are carried out by using the Permetest and moisture vapour transmission rate (MVTR) cell methods


Author(s):  
Olga S. Reshetnyak

Studies of river ion runoff and its temporal variability are important. It affects coastal waters and is interrelated with climatic changes in the Arctic region. Long-term data on the chemical runoff of macrocomponents (chlorides, sulfates, hydrocarbonates, calcium and magnesium ions) at the outlet sections of large Arctic rivers in Russia - Pechora, Usa, Yenisei, Ob, Pur, Taz, Lena, Yana and Kolyma are given. The values of volumes and modules of chemical runoff were calculated on the basis of long-term (1980-2018) hydrological and hydrochemical information from the state observation system of Roshydrom-et. It is shown that the change in the absolute values of the chemical runoff is consistent with the water inflow. Greatest contribution to the ionic runoff is made by hydrocarbonates. The intra-annual change in the water inflow and the macrocomponents runoff occurs synchronously. There is a decisive role of water runoff in the formation of chemical runoff from the catchments of large Arctic rivers. Comparison of the chemical runoff modulus indicator made it possible to classify them into low, medium or high ionic runoff rivers. It was found that the maximum runoff of macrocomponents occurs from the catchment of the Usa river. It is may be due to active processes of chemical denudation and climate change.


2021 ◽  
Vol 40 ◽  
Author(s):  
Björn-Martin Sinnhuber

Long-term meteorological data for the Arctic are sparse. One of the longest quasi-continuous temperature time series in the High Arctic is the extended Svalbard Airport series, providing daily temperature data from 1898 until the present. Here, I derive an adjustment to historic temperature observations on the island of Nordaustlandet, north-east Svalbard, in order to link these to the extended Svalbard Airport series. This includes the Haudegen observations at Rijpfjorden during 1944/45 and a previously unrecognized data set obtained by the Norwegian hunters and trappers Gunnar Knoph and Henry Rudi during their wintering at Rijpfjorden in 1934/35. The adjustment is based on data from an automatic weather station at Rijpfjorden during 2014–16 and verified with other independent historic temperature observations on Nordaustlandet. An analysis of the Haudegen radiosonde data indicates that the surface temperature observations at Rijpfjorden are generally well correlated with the free tropospheric temperatures at 850 hPa, but occasionally show the occurrence of boundary-layer inversions during winter, where local temperatures fall substantially below what is expected from the regression. The adjusted historic observations from Nordaustlandet can, therefore, be used to fill remaining gaps in the extended Svalbard Airport series.


2013 ◽  
Vol 10 (7) ◽  
pp. 11447-11581 ◽  
Author(s):  
P. Ciais ◽  
A. J. Dolman ◽  
A. Bombelli ◽  
R. Duren ◽  
A. Peregon ◽  
...  

Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales.


Sign in / Sign up

Export Citation Format

Share Document