The growth rate of skeleton in ontogeny of the antarctic fish from the suborder Notothenioidae (Perciformes, Pisces) and the problem of cold compensation

2007 ◽  
Vol 415 (1) ◽  
pp. 307-309 ◽  
Author(s):  
O. S. Voskoboinikova
2008 ◽  
Vol 44 (3) ◽  
pp. 66-74 ◽  
Author(s):  
V. M. Voytsits'kyi ◽  
N. K. Rodionova ◽  
S. V. Khyzhniak ◽  
L. G. Manylo
Keyword(s):  

Author(s):  
Chiara Papetti ◽  
Massimiliano Babbucci ◽  
Agnes Dettai ◽  
Andrea Basso ◽  
Magnus Lucassen ◽  
...  

Abstract The vertebrate mitochondrial genomes generally present a typical gene order. Exceptions are uncommon and important to study the genetic mechanisms of gene order rearrangements and their consequences on phylogenetic output and mitochondrial function. Antarctic notothenioid fish carry some peculiar rearrangements of the mitochondrial gene order. In this first systematic study of 28 species, we analysed known and undescribed mitochondrial genome rearrangements for a total of eight different gene orders within the notothenioid fish. Our reconstructions suggest that transpositions, duplications and inversion of multiple genes are the most likely mechanisms of rearrangement in notothenioid mitochondrial genomes. In Trematominae, we documented an extremely rare inversion of a large genomic segment of 5300 bp that partially affected the gene compositional bias but not the phylogenetic output. The genomic region delimited by nad5 and trnF, close to the area of the Control Region, was identified as the hot spot of variation in Antarctic fish mitochondrial genomes. Analysing the sequence of several intergenic spacers and mapping the arrangements on a newly generated phylogeny showed that the entire history of the Antarctic notothenioids is characterized by multiple, relatively rapid, events of disruption of the gene order. We hypothesised that a pre-existing genomic flexibility of the ancestor of the Antarctic notothenioids may have generated a precondition for gene order rearrangement, and the pressure of purifying selection could have worked for a rapid restoration of the mitochondrial functionality and compactness after each event of rearrangement.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 621-629
Author(s):  
Mayuka Uchida ◽  
Ippei Suzuki ◽  
Keizo Ito ◽  
Mayumi Ishizuka ◽  
Yoshinori Ikenaka ◽  
...  

AbstractAntarctic minke whales (Balaenoptera bonaerensis) are migratory capital breeders that experience intensive summer feeding on Antarctic krill (Euphausia superba) in the Southern Ocean and winter breeding at lower latitudes, but their prey outside of the Antarctic is unknown. Stable isotope analyses were conducted on δ13C and δ15N from the baleen plates of ten pregnant Antarctic minke whales to understand the growth rate of the baleen plate and their diet in lower latitudes. Two to three oscillations along the length of the edge of the baleen plate were observed in δ15N, and the annual growth rate was estimated to be 75.2 ± 20.4 mm, with a small amplitude (0.97 ± 0.21 ‰). Bayesian stable isotope mixing models were used to understand the dominant prey that contributed to the isotopic component of the baleen plate using Antarctic krill from the stomach contents and reported values of Antarctic coastal krill (Euphausia crystallorophias), Antarctic silver fish (Pleuragramma antarcticum), Australian krill spp., and Australian pelagic fish spp.. The models showed that the diet composition of the most recent three records from the base of the baleen plates (model 1) and the highest δ15N values in each baleen plate (model 2) were predominantly Antarctic krill, with a contribution rate of approximately 80%. The rates were approximately 10% for Antarctic coastal krill and less than 2.0% for the two Australian prey groups in both models. These results suggest that pregnant Antarctic minke whales did not feed on enough prey outside of the Antarctic to change the stable isotope values in their baleen plates.


Polar Biology ◽  
2007 ◽  
Vol 31 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Melody S. Clark ◽  
Keiron P. P. Fraser ◽  
Gavin Burns ◽  
Lloyd S. Peck

2007 ◽  
Vol 24 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Lucélia Donatti ◽  
Edith Fanta

The Antarctic fish Notothenia coriiceps Richardson, 1844 lives in an environment of daily and annual photic variation and retina cells have to adjust morphologically to environmental luminosity. After seven day dark or seven day light acclimation of two groups of fish, retinas were extracted and processed for light and transmission electron microscopy. In seven day dark adapted, retina pigment epithelium melanin granules were aggregated at the basal region of cells, and macrophages were seen adjacent to the apical microvilli, between the photoreceptors. In seven day light adapted epithelium, melanin granules were inside the apical microvilli of epithelial cells and macrophages were absent. The supranuclear region of cones adapted to seven day light had less electron dense cytoplasm, and an endoplasmic reticulum with broad tubules. The mitochondria in the internal segment of cones adapted to seven day light were larger, and less electron dense. The differences in the morphology of cones and pigment epithelial cells indicate that N. coriiceps has retinal structural adjustments presumably optimizing vision in different light conditions.


2007 ◽  
Vol 24 (2) ◽  
pp. 457-462 ◽  
Author(s):  
Lucélia Donatti ◽  
Edith Fanta

The Antarctic fish Trematomus newnesi (Boulenger, 1902) occurs from benthic to pelagic habitats, in seasonally and daily varied photic conditions that induce retinomotor movements. Fish were experimentally kept under constant darkness or light, and 12Light/12Dark for seven days. The retinomotor movement of the pigment epithelium was established through the pigment index, while that of the cones was calculated as the length of the myoid. The retinomotor movement of the pigment epithelium in T.newnesi,revealed that the adaptation to constant light occurred in the one hour of exposure, remaining constant for the next seven days. However, the adaptation to constant darkness, was slower. The difference between the mean values of the pigment indices in the time intervals of sampling was significant in the first hours of the experiment, and only after six hours they were not significant any more. The myoid of cones became elongated in darkness and contracted in light. In the experiments where T.newnesiwas exposed initially to 12 hours light followed by 12 hours darkness 12 was evidenced that the speed and intensity of the retinomotor movements was higher when darkness changed into light, than when light changed into darkness.


2000 ◽  
Vol 12 (3) ◽  
pp. 257-257 ◽  
Author(s):  
Andrew Clarke

Theodosius Dobzhansky once remarked that nothing in biology makes sense other than in the light of evolution, thereby emphasising the central role of evolutionary studies in providing the theoretical context for all of biology. It is perhaps surprising then that evolutionary biology has played such a small role to date in Antarctic science. This is particularly so when it is recognised that the polar regions provide us with an unrivalled laboratory within which to undertake evolutionary studies. The Antarctic exhibits one of the classic examples of a resistance adaptation (antifreeze peptides and glycopeptides, first described from Antarctic fish), and provides textbook examples of adaptive radiations (for example amphipod crustaceans and notothenioid fish). The land is still largely in the grip of major glaciation, and the once rich terrestrial floras and faunas of Cenozoic Gondwana are now highly depauperate and confined to relatively small patches of habitat, often extremely isolated from other such patches. Unlike the Arctic, where organisms are returning to newly deglaciated land from refugia on the continental landmasses to the south, recolonization of Antarctica has had to take place by the dispersal of propagules over vast distances. Antarctica thus offers an insight into the evolutionary responses of terrestrial floras and faunas to extreme climatic change unrivalled in the world. The sea forms a strong contrast to the land in that here the impact of climate appears to have been less severe, at least in as much as few elements of the fauna show convincing signs of having been completely eradicated.


Sign in / Sign up

Export Citation Format

Share Document