Bistability and Formation of the Biofilm Matrix as Adaptive Mechanisms during the Stationary Phase of Bacillus subtilis

Microbiology ◽  
2021 ◽  
Vol 90 (1) ◽  
pp. 20-36
Author(s):  
M. R. Sharipova ◽  
A. M. Mardanova ◽  
N. L. Rudakova ◽  
D. S. Pudova
2021 ◽  
Vol 9 (6) ◽  
pp. 1284
Author(s):  
Tatiana Ermi ◽  
Carmen Vallin ◽  
Ana Gabriela Regalado García ◽  
Moises Bravo ◽  
Ismaray Fernandez Cordero ◽  
...  

Transcription-induced mutagenic mechanisms limit genetic changes to times when expression happens and to coding DNA. It has been hypothesized that intrinsic sequences that have the potential to form alternate DNA structures, such as non-B DNA structures, influence these mechanisms. Non-B DNA structures are promoted by transcription and induce genome instability in eukaryotic cells, but their impact in bacterial genomes is less known. Here, we investigated if G4 DNA- and hairpin-forming motifs influence stationary-phase mutagenesis in Bacillus subtilis. We developed a system to measure the influence of non-B DNA on B. subtilis stationary-phase mutagenesis by deleting the wild-type argF at its chromosomal position and introducing IPTG-inducible argF alleles differing in their ability to form hairpin and G4 DNA structures into an ectopic locus. Using this system, we found that sequences predicted to form non-B DNA structures promoted mutagenesis in B. subtilis stationary-phase cells; such a response did not occur in growing conditions. We also found that the transcription-coupled repair factor Mfd promoted mutagenesis at these predicted structures. In summary, we showed that non-B DNA-forming motifs promote genetic instability, particularly in coding regions in stressed cells; therefore, non-B DNA structures may have a spatial and temporal mutagenic effect in bacteria. This study provides insights into mechanisms that prevent or promote mutagenesis and advances our understanding of processes underlying bacterial evolution.


PROTEOMICS ◽  
2008 ◽  
Vol 8 (10) ◽  
pp. 2062-2076 ◽  
Author(s):  
Annette Dreisbach ◽  
Andreas Otto ◽  
Dörte Becher ◽  
Elke Hammer ◽  
Alexander Teumer ◽  
...  

Microbiology ◽  
2014 ◽  
Vol 160 (2) ◽  
pp. 243-260 ◽  
Author(s):  
Öykü İrigül-Sönmez ◽  
Türkan E. Köroğlu ◽  
Büşra Öztürk ◽  
Ákos T. Kovács ◽  
Oscar P. Kuipers ◽  
...  

The lutR gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in Bacillus subtilis. To understand the broader regulatory roles of LutR in B. subtilis, we studied the genome-wide effects of a lutR null mutation by combining transcriptional profiling studies using DNA microarrays, reverse transcription quantitative PCR, lacZ fusion analyses and gel mobility shift assays. We report that 65 transcriptional units corresponding to 23 mono-cistronic units and 42 operons show altered expression levels in lutR mutant cells, as compared with lutR + wild-type cells in early stationary phase. Among these, 11 single genes and 25 operons are likely to be under direct control of LutR. The products of these genes are involved in a variety of physiological processes associated with the onset of stationary phase in B. subtilis, including degradative enzyme production, antibiotic production and resistance, carbohydrate utilization and transport, nitrogen metabolism, phosphate uptake, fatty acid and phospholipid biosynthesis, protein synthesis and translocation, cell-wall metabolism, energy production, transfer of mobile genetic elements, induction of phage-related genes, sporulation, delay of sporulation and cannibalism, and biofilm formation. Furthermore, an electrophoretic mobility shift assay performed in the presence of both SinR and LutR revealed a close overlap between the LutR and SinR targets. Our data also revealed a significant overlap with the AbrB regulon. Together, these findings reveal that LutR is part of the global complex, interconnected regulatory systems governing adaptation of bacteria to the transition from exponential growth to stationary phase.


2008 ◽  
Vol 191 (3) ◽  
pp. 1101-1105 ◽  
Author(s):  
Warawan Eiamphungporn ◽  
John D. Helmann

ABSTRACT Bacillus subtilis yabE encodes a predicted resuscitation-promoting factor/stationary-phase survival (Rpf/Sps) family autolysin. Here, we demonstrate that yabE is negatively regulated by a cis-acting antisense RNA which, in turn, is regulated by two extracytoplasmic function σ factors: σX and σM.


2006 ◽  
Vol 188 (21) ◽  
pp. 7512-7520 ◽  
Author(s):  
Christian Ross ◽  
Christine Pybus ◽  
Mario Pedraza-Reyes ◽  
Huang-Mo Sung ◽  
Ronald E. Yasbin ◽  
...  

ABSTRACT Previously, using a chromosomal reversion assay system, we established that an adaptive mutagenic process occurs in nongrowing Bacillus subtilis cells under stress, and we demonstrated that multiple mechanisms are involved in generating these mutations (41, 43). In an attempt to delineate how these mutations are generated, we began an investigation into whether or not transcription and transcription-associated proteins influence adaptive mutagenesis. In B. subtilis, the Mfd protein (transcription repair coupling factor) facilitates removal of RNA polymerase stalled at transcriptional blockages and recruitment of repair proteins to DNA lesions on the transcribed strand. Here we demonstrate that the loss of Mfd has a depressive effect on stationary-phase mutagenesis. An association between Mfd mutagenesis and aspects of transcription is discussed.


2002 ◽  
Vol 184 (17) ◽  
pp. 4881-4890 ◽  
Author(s):  
Robert A. Britton ◽  
Patrick Eichenberger ◽  
Jose Eduardo Gonzalez-Pastor ◽  
Paul Fawcett ◽  
Rita Monson ◽  
...  

ABSTRACT Sigma-H is an alternative RNA polymerase sigma factor that directs the transcription of many genes that function at the transition from exponential growth to stationary phase in Bacillus subtilis. Twenty-three promoters, which drive transcription of 33 genes, are known to be recognized by sigma-H-containing RNA polymerase. To identify additional genes under the control of sigma-H on a genome-wide basis, we carried out transcriptional profiling experiments using a DNA microarray containing >99% of the annotated B. subtilis open reading frames. In addition, we used a bioinformatics-based approach aimed at the identification of promoters recognized by RNA polymerase containing sigma-H. This combination of approaches was successful in confirming most of the previously described sigma-H-controlled genes. In addition, we identified 26 putative promoters that drive expression of 54 genes not previously known to be under the direct control of sigma-H. Based on the known or inferred function of most of these genes, we conclude that, in addition to its previously known roles in sporulation and competence, sigma-H controls genes involved in many physiological processes associated with the transition to stationary phase, including cytochrome biogenesis, generation of potential nutrient sources, transport, and cell wall metabolism.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 190
Author(s):  
Holly A. Martin ◽  
Amanda A. Kidman ◽  
Jillian Socea ◽  
Carmen Vallin ◽  
Mario Pedraza-Reyes ◽  
...  

Bacterial cells develop mutations in the absence of cellular division through a process known as stationary-phase or stress-induced mutagenesis. This phenomenon has been studied in a few bacterial models, including Escherichia coli and Bacillus subtilis; however, the underlying mechanisms between these systems differ. For instance, RecA is not required for stationary-phase mutagenesis in B. subtilis like it is in E. coli. In B. subtilis, RecA is essential to the process of genetic transformation in the subpopulation of cells that become naturally competent in conditions of stress. Interestingly, the transcriptional regulator ComK, which controls the development of competence, does influence the accumulation of mutations in stationary phase in B. subtilis. Since recombination is not involved in this process even though ComK is, we investigated if the development of a subpopulation (K-cells) could be involved in stationary-phase mutagenesis. Using genetic knockout strains and a point-mutation reversion system, we investigated the effects of ComK, ComEA (a protein involved in DNA transport during transformation), and oxidative damage on stationary-phase mutagenesis. We found that stationary-phase revertants were more likely to have undergone the development of competence than the background of non-revertant cells, mutations accumulated independently of DNA uptake, and the presence of exogenous oxidants potentiated mutagenesis in K-cells. Therefore, the development of the K-state creates conditions favorable to an increase in the genetic diversity of the population not only through exogenous DNA uptake but also through stationary-phase mutagenesis.


Sign in / Sign up

Export Citation Format

Share Document