scholarly journals Non-B DNA-Forming Motifs Promote Mfd-Dependent Stationary-Phase Mutagenesis in Bacillus subtilis

2021 ◽  
Vol 9 (6) ◽  
pp. 1284
Author(s):  
Tatiana Ermi ◽  
Carmen Vallin ◽  
Ana Gabriela Regalado García ◽  
Moises Bravo ◽  
Ismaray Fernandez Cordero ◽  
...  

Transcription-induced mutagenic mechanisms limit genetic changes to times when expression happens and to coding DNA. It has been hypothesized that intrinsic sequences that have the potential to form alternate DNA structures, such as non-B DNA structures, influence these mechanisms. Non-B DNA structures are promoted by transcription and induce genome instability in eukaryotic cells, but their impact in bacterial genomes is less known. Here, we investigated if G4 DNA- and hairpin-forming motifs influence stationary-phase mutagenesis in Bacillus subtilis. We developed a system to measure the influence of non-B DNA on B. subtilis stationary-phase mutagenesis by deleting the wild-type argF at its chromosomal position and introducing IPTG-inducible argF alleles differing in their ability to form hairpin and G4 DNA structures into an ectopic locus. Using this system, we found that sequences predicted to form non-B DNA structures promoted mutagenesis in B. subtilis stationary-phase cells; such a response did not occur in growing conditions. We also found that the transcription-coupled repair factor Mfd promoted mutagenesis at these predicted structures. In summary, we showed that non-B DNA-forming motifs promote genetic instability, particularly in coding regions in stressed cells; therefore, non-B DNA structures may have a spatial and temporal mutagenic effect in bacteria. This study provides insights into mechanisms that prevent or promote mutagenesis and advances our understanding of processes underlying bacterial evolution.

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 193
Author(s):  
Alexandra Berroyer ◽  
Nayun Kim

Topoisomerase I in eukaryotic cells is an important regulator of DNA topology. Its catalytic function is to remove positive or negative superhelical tension by binding to duplex DNA, creating a reversible single-strand break, and finally religating the broken strand. Proper maintenance of DNA topological homeostasis, in turn, is critically important in the regulation of replication, transcription, DNA repair, and other processes of DNA metabolism. One of the cellular processes regulated by the DNA topology and thus by Topoisomerase I is the formation of non-canonical DNA structures. Non-canonical or non-B DNA structures, including the four-stranded G-quadruplex or G4 DNA, are potentially pathological in that they interfere with replication or transcription, forming hotspots of genome instability. In this review, we first describe the role of Topoisomerase I in reducing the formation of non-canonical nucleic acid structures in the genome. We further discuss the interesting recent discovery that Top1 and Top1 mutants bind to G4 DNA structures in vivo and in vitro and speculate on the possible consequences of these interactions.


2021 ◽  
Vol 22 (22) ◽  
pp. 12599
Author(s):  
Rebecca Linke ◽  
Michaela Limmer ◽  
Stefan Juranek ◽  
Annkristin Heine ◽  
Katrin Paeschke

DNA molecules can adopt a variety of alternative structures. Among these structures are G-quadruplex DNA structures (G4s), which support cellular function by affecting transcription, translation, and telomere maintenance. These structures can also induce genome instability by stalling replication, increasing DNA damage, and recombination events. G-quadruplex-driven genome instability is connected to tumorigenesis and other genetic disorders. In recent years, the connection between genome stability, DNA repair and G4 formation was further underlined by the identification of multiple DNA repair proteins and ligands which bind and stabilize said G4 structures to block specific DNA repair pathways. The relevance of G4s for different DNA repair pathways is complex and depends on the repair pathway itself. G4 structures can induce DNA damage and block efficient DNA repair, but they can also support the activity and function of certain repair pathways. In this review, we highlight the roles and consequences of G4 DNA structures for DNA repair initiation, processing, and the efficiency of various DNA repair pathways.


2020 ◽  
Vol 48 (3) ◽  
pp. 1108-1119 ◽  
Author(s):  
Rajendra Kumar ◽  
Karam Chand ◽  
Sudipta Bhowmik ◽  
Rabindra Nath Das ◽  
Snehasish Bhattacharjee ◽  
...  

Abstract G-quadruplex (G4) DNA structures are linked to key biological processes and human diseases. Small molecules that target specific G4 DNA structures and signal their presence would therefore be of great value as chemical research tools with potential to further advance towards diagnostic and therapeutic developments. However, the development of these types of specific compounds remain as a great challenge. In here, we have developed a compound with ability to specifically signal a certain c-MYC G4 DNA structure through a fluorescence light-up mechanism. Despite the compound's two binding sites on the G4 DNA structure, only one of them result in the fluorescence light-up effect. This G-tetrad selectivity proved to originate from a difference in flexibility that affected the binding affinity and tilt the compound out of the planar conformation required for the fluorescence light-up mechanism. The intertwined relation between the presented factors is likely the reason for the lack of examples using rational design to develop compounds with turn-on emission that specifically target certain G4 DNA structures. However, this study shows that it is indeed possible to develop such compounds and present insights into the molecular details of specific G4 DNA recognition and signaling to advance future studies of G4 biology.


PROTEOMICS ◽  
2008 ◽  
Vol 8 (10) ◽  
pp. 2062-2076 ◽  
Author(s):  
Annette Dreisbach ◽  
Andreas Otto ◽  
Dörte Becher ◽  
Elke Hammer ◽  
Alexander Teumer ◽  
...  

Author(s):  
Hitoshi Nakagama ◽  
Kumiko Higuchi ◽  
Etsuko Tanaka ◽  
Naoto Tsuchiya ◽  
Katsuhiko Nakashima ◽  
...  

Microbiology ◽  
2014 ◽  
Vol 160 (2) ◽  
pp. 243-260 ◽  
Author(s):  
Öykü İrigül-Sönmez ◽  
Türkan E. Köroğlu ◽  
Büşra Öztürk ◽  
Ákos T. Kovács ◽  
Oscar P. Kuipers ◽  
...  

The lutR gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in Bacillus subtilis. To understand the broader regulatory roles of LutR in B. subtilis, we studied the genome-wide effects of a lutR null mutation by combining transcriptional profiling studies using DNA microarrays, reverse transcription quantitative PCR, lacZ fusion analyses and gel mobility shift assays. We report that 65 transcriptional units corresponding to 23 mono-cistronic units and 42 operons show altered expression levels in lutR mutant cells, as compared with lutR + wild-type cells in early stationary phase. Among these, 11 single genes and 25 operons are likely to be under direct control of LutR. The products of these genes are involved in a variety of physiological processes associated with the onset of stationary phase in B. subtilis, including degradative enzyme production, antibiotic production and resistance, carbohydrate utilization and transport, nitrogen metabolism, phosphate uptake, fatty acid and phospholipid biosynthesis, protein synthesis and translocation, cell-wall metabolism, energy production, transfer of mobile genetic elements, induction of phage-related genes, sporulation, delay of sporulation and cannibalism, and biofilm formation. Furthermore, an electrophoretic mobility shift assay performed in the presence of both SinR and LutR revealed a close overlap between the LutR and SinR targets. Our data also revealed a significant overlap with the AbrB regulon. Together, these findings reveal that LutR is part of the global complex, interconnected regulatory systems governing adaptation of bacteria to the transition from exponential growth to stationary phase.


2008 ◽  
Vol 191 (3) ◽  
pp. 1101-1105 ◽  
Author(s):  
Warawan Eiamphungporn ◽  
John D. Helmann

ABSTRACT Bacillus subtilis yabE encodes a predicted resuscitation-promoting factor/stationary-phase survival (Rpf/Sps) family autolysin. Here, we demonstrate that yabE is negatively regulated by a cis-acting antisense RNA which, in turn, is regulated by two extracytoplasmic function σ factors: σX and σM.


Microbiology ◽  
2021 ◽  
Vol 90 (1) ◽  
pp. 20-36
Author(s):  
M. R. Sharipova ◽  
A. M. Mardanova ◽  
N. L. Rudakova ◽  
D. S. Pudova

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 870 ◽  
Author(s):  
Peter Lansdorp ◽  
Niek van Wietmarschen

Guanine quadruplex (G4) structures are among the most stable secondary DNA structures that can form in vitro, and evidence for their existence in vivo has been steadily accumulating. Originally described mainly for their deleterious effects on genome stability, more recent research has focused on (potential) functions of G4 structures in telomere maintenance, gene expression, and other cellular processes. The combined research on G4 structures has revealed that properly regulating G4 DNA structures in cells is important to prevent genome instability and disruption of normal cell function. In this short review we provide some background and historical context of our work resulting in the identification of FANCJ, RTEL1 and BLM as helicases that act on G4 structures in vivo. Taken together these studies highlight important roles of different G4 DNA structures and specific G4 helicases at selected genomic locations and telomeres in regulating gene expression and maintaining genome stability.


Sign in / Sign up

Export Citation Format

Share Document