Investigation into the Change in the Composition of the Ethylbenzene Feed in a Styrene Production Reactor while Taking into Account the Partial Pressures of the Reactants

2020 ◽  
Vol 54 (6) ◽  
pp. 1297-1305
Author(s):  
S. L. Podvalny ◽  
A. P. Popov ◽  
S. G. Tikhomirov ◽  
O. V. Karmanova ◽  
O. G. Neizvestnyi ◽  
...  
Author(s):  
А. В. Поляк ◽  
М. М. Гуйван ◽  
О. М. Малінін

1981 ◽  
Vol 46 (11) ◽  
pp. 2669-2675 ◽  
Author(s):  
Ivo Paseka

Hydrogenation of nitrogen oxide in acid solutions on Pt-C catalysts proceeds in dependence on experimental conditions either in purely diffusion region or in the diffusion and kinetically controlled region. The boundary between these two processes shifts to the higher ratio of NO to H2 partial pressures with increasing platinum content and decreasing intensity of agitation.


1988 ◽  
Vol 53 (12) ◽  
pp. 2995-3013
Author(s):  
Emerich Erdös ◽  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma

For a quantitative description of the epitaxial growth rate of gallium arsenide, two models are proposed including two rate controlling steps, namely the diffusion of components in the gas phase and the surface reaction. In the models considered, the surface reaction involves a reaction triple - or quadruple centre. In both models three mechanisms are considered which differ one from the other by different adsorption - and impact interaction of reacting particles. In every of the six cases, the pertinent rate equations were derived, and the models have been confronted with the experimentally found dependences of the growth rate on partial pressures of components in the feed. The results are discussed with regard to the plausibility of individual mechanisms and of both models, and also with respect to their applicability and the direction of further investigations.


1991 ◽  
Vol 56 (8) ◽  
pp. 1575-1579 ◽  
Author(s):  
Jiří Vobiš ◽  
Karel Mocek ◽  
Emerich Erdös

The formation of sodium disulfite by the heterogeneous reaction of solid active sodium sulfite with gaseous sulfur dioxide in the presence of water vapour was investigated over the temperature range of 293 to 393 K at SO2. H2O and O2 partial pressures of 1.2-7.4, 1.2-6.4 and 0-11.3 kPa, respectively. The effect of the reaction time was also examined. Kinetic measurements were supplemented with the determination of the equilibrium dissociation pressure of SO2 in contact with sodium sulfite at 373.15 K. The major aim of the work was to establish the optimum conditions for attaining the maximum degree of conversion of the solid reactant to sodium disulfite. The conditions for the formation of virtually pure sodium disulfite were found.


2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


2002 ◽  
Vol 737 ◽  
Author(s):  
Theodore I. Kamins ◽  
Gilberto Medeiros-Ribeiro ◽  
Douglas A. A. Ohlberg ◽  
R. Stanley Williams

ABSTRACTWhen Ge is deposited epitaxially on Si, the strain energy from the lattice mismatch causes the Ge in layers thicker than about four monolayers to form distinctive, three-dimensional islands. The shape of the islands is determined by the energies of the surface facets, facet edges, and interfaces. When phosphorus is added during the deposition, the surface energies change, modifying the island shapes and sizes, as well as the deposition process. When phosphine is introduced to the germane/hydrogen ambient during Ge deposition, the deposition rate decreases because of competitive adsorption. The steady-state deposition rate is not reached for thin layers. The deposited, doped layers contain three different island shapes, as do undoped layers; however, the island size for each shape is smaller for the doped layers than for the corresponding undoped layers. The intermediate-size islands are the most significant; the intermediate-size doped islands are of the same family as the undoped, multifaceted “dome” structures, but are considerably smaller. The largest doped islands appear to be related to the defective “superdomes” discussed for undoped islands. The distribution between the different island shapes depends on the phosphine partial pressure. At higher partial pressures, the smaller structures are absent. Phosphorus appears to act as a mild surfactant, suppressing small islands.


Sign in / Sign up

Export Citation Format

Share Document