Potential habitat of snow leopard ( Panthera uncia , Felinae) in south Siberia and adjacent territories based on the maximum entropy distribution model

2019 ◽  
Vol 98 (3) ◽  
pp. 332-342
Author(s):  
Y. A. Kalashnikova ◽  
A. S. Karnaukhov ◽  
M. Y. Dubinin ◽  
A. D. Poyarkov ◽  
V. V. Rozhnov
2011 ◽  
Vol 403-408 ◽  
pp. 5244-5249
Author(s):  
Chang Gao Xia ◽  
Meng Zhang ◽  
Xiang Gao ◽  
Zhen Yu Zhang

The mixed distribution model and the maximum entropy model are used to represent service load of the vehicle clutch. The parameters of those models are estimated with different methods. The findings indicate that maximum entropy distribution can accurately describe different statistical features of random variables as minimally prejudiced probability distribution if order of the distribution function is properly selected, and that the mixed Weibull distribution shows super performance of the complicated statistical model expression. The parameters of those models are estimated by optimization based on non-linear least squares.


Oryx ◽  
2017 ◽  
Vol 51 (4) ◽  
pp. 587-589 ◽  
Author(s):  
Paul J. Buzzard ◽  
Xueyou Li ◽  
William V. Bleisch

AbstractThe Endangered snow leopard Panthera uncia is a flagship species of mountainous Asia and a conservation priority. China is the most important country for the species’ conservation because it has the most potential habitat and the largest population of snow leopards. North-west Yunnan province in south-west China is at the edge of the snow leopard's range, and a biodiversity hotspot, where three major Asian rivers, the Yangtze, Mekong and Salween, flow off the Tibetan plateau and cut deep valleys through the Hengduan Mountains. The snow leopard's status in north-west Yunnan is uncertain. We conducted interviews and camera-trapping surveys to assess the species’ status at multiple sites: two east of the Yangtze River and two between the Yangtze and Mekong Rivers. Thirty-eight herders/nature reserve officials interviewed claimed that snow leopards were present, but in 6,300 camera-trap days we did not obtain any photographs of snow leopards, so if the species is present, it is rare. However, we obtained many photographs of potential prey, such as blue sheep Pseudois nayaur, as well as photographs of common leopards Panthera pardus, at high elevations (3,000–4,500 m). More study is necessary in Yunnan and other areas of south-west China to investigate the status and resource overlap of snow leopards and common leopards, especially as climate change is resulting in increases in common leopard habitat and decreases in snow leopard habitat.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Billy Joel M. Almarinez ◽  
Mary Jane A. Fadri ◽  
Richard Lasina ◽  
Mary Angelique A. Tavera ◽  
Thaddeus M. Carvajal ◽  
...  

Comperiella calauanica is a host-specific endoparasitoid and effective biological control agent of the diaspidid Aspidiotus rigidus, whose outbreak from 2010 to 2015 severely threatened the coconut industry in the Philippines. Using the maximum entropy (Maxent) algorithm, we developed a species distribution model (SDM) for C. calauanica based on 19 bioclimatic variables, using occurrence data obtained mostly from field surveys conducted in A. rigidus-infested areas in Luzon Island from 2014 to 2016. The calculated the area under the ROC curve (AUC) values for the model were very high (0.966, standard deviation = 0.005), indicating the model’s high predictive power. Precipitation seasonality was found to have the highest relative contribution to model development. Response curves produced by Maxent suggested the positive influence of mean temperature of the driest quarter, and negative influence of precipitation of the driest and coldest quarters on habitat suitability. Given that C. calauanica has been found to always occur with A. rigidus in Luzon Island due to high host-specificity, the SDM for the parasitoid may also be considered and used as a predictive model for its host. This was confirmed through field surveys conducted between late 2016 and early 2018, which found and confirmed the occurrence of A. rigidus in three areas predicted by the SDM to have moderate to high habitat suitability or probability of occurrence of C. calauanica: Zamboanga City in Mindanao; Isabela City in Basilan Island; and Tablas Island in Romblon. This validation in the field demonstrated the utility of the bioclimate-based SDM for C. calauanica in predicting habitat suitability or probability of occurrence of A. rigidus in the Philippines.


2021 ◽  
Vol 30 (3) ◽  
pp. 797-817
Author(s):  
Charlotte E. Hacker ◽  
Matthew Jevit ◽  
Shafqat Hussain ◽  
Ghulam Muhammad ◽  
Bariushaa Munkhtsog ◽  
...  

1990 ◽  
Vol 27 (2) ◽  
pp. 303-313 ◽  
Author(s):  
Claudine Robert

The maximum entropy principle is used to model uncertainty by a maximum entropy distribution, subject to some appropriate linear constraints. We give an entropy concentration theorem (whose demonstration is based on large deviation techniques) which is a mathematical justification of this statistical modelling principle. Then we indicate how it can be used in artificial intelligence, and how relevant prior knowledge is provided by some classical descriptive statistical methods. It appears furthermore that the maximum entropy principle yields to a natural binding between descriptive methods and some statistical structures.


Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Evan Greenspan ◽  
Anthony J. Giordano

Abstract Knowledge about the current distribution of threatened and/or understudied species is a fundamental component of conservation biology. Mapping species distributions based on recent known occurrences is particularly important for those that are rare or declining. Too often, cryptic species go undetected throughout parts of their range, whereas others just receive less research attention. We used contemporary presence data for the Pallas’s cat (Otocolobus manul), a small cryptic felid, to characterize potential rangewide and regional habitat for the species and identify those abiotic and biotic variables most influencing its distribution. Several regions lacking contemporary occurrence records contain potential habitat for Pallas’s cats, including the Koh-i-Baba Mountains of Afghanistan, Qinghai-Tibetan Plateau, steppes of Inner Mongolia, Kunlun Mountains of China, and Tian Shan and Pamir Mountains of Kyrgyzstan, Tajikistan, and China. Some of these areas have not been included in prior rangewide distribution assessments. The distribution of pikas (Ochotona spp.), small mammals that likely represent a critical prey species everywhere they are sympatric, was the most important factor affecting the Pallas’s cat’s distribution. This suggests Pallas’s cats may be prey specialists, and that pika presence and habitat are critical considerations for future Pallas’s cat surveys and in the development of regional conservation actions.


Sign in / Sign up

Export Citation Format

Share Document